5. Полупроводниковые диоды и транзисторы СВЧ

5.1. Классификация полупроводниковых СВЧ диодов. Особенности работы полупроводниковых диодов в диапазоне СВЧ

Сверхчастотный полупроводниковый диод (СВЧ-диод) – это полупроводниковый диод, предназначенный для преобразования и обработки сверхчастотного сигнала.

Полупроводниковые СВЧ-диоды уже длительное время применяют в различной радиоэлектронной аппаратуре и измерительной технике СВЧ-диапазона, т.е. на частотах более 300 МГц. Сначала СВЧ-диоды использовали для детектирования и смещения сигналов. Для этих целей применяли точечные диоды, выпрямляющий электрический переход в которых возникал между кристаллом полупроводника и прижимным металлическим электродом в виде заостренной пружинки. Созданные в последнее время новые типы СВЧ-диодов практически целиком заменили точечные детекторные и смесительные диоды. Они дают возможность решать задачи генерации и усиления электромагнитных колебаний СВЧ-диапазона, умножения частоты, модуляции, регулирования, ограничения сигналов и т.п.

На сверхвысоких частотах могут работать такие СВЧ-диоды как детекторные, смесительные, параметрические, настроечные, переключательные, лавинно-пролетные, генераторы Ганна и др.

5.2. Детекторные диоды СВЧ

Детекторный полупроводниковый диод – это полупроводниковый диод, предназначенный для детектирования сигнала.

При детектировании используется выпрямляющее свойство диода для выделения из модулированных по амплитуде ВЧ- или СВЧ-колебаний сигнала более низкой частоты, который потом поступает на вход усилителя (рисунок).

Одним из основных параметров детекторных СВЧ-диодов является чувствительность по току b 1 – отношение приращения выпрямленного тока при заданной нагрузке в выходной цепи диода к мощности СВЧ-сигнала, подводимой ко входу диодной камеры с детекторным диодом в рабочем режиме и вызвавшей это приращение. Чувствительность по току детекторного диода зависит от постоянного прямого тока смещения. Наибольшие значения чувствительности по току обычно получаются при прямом токе смещения в несколько десятков микроампер, но при выборе тока смещения необходимо учитывать его влияние и на другие параметры.

Обобщенным параметром детекторного диода, учитывающим различные свойства диода и следующего за ним усилителя (видеоусилителя), является коэффициент качества детекторного диода, который характеризует чувствительность приемного устройства с детекторным диодом и определяется по формуле: где rдиф – дифференциальное сопротивление диода при определенном положительном смещении; nш – шумовое отношение СВЧ-диода; rш – эквивалентное шумовое сопротивление видеоусилителя, которое обычно принимают при расчетах равным 1 кОм.

Лучшие детекторные СВЧ-диоды имеют коэффициент качества более 100 Вт –1/2. К таким диодам можно отнести, например, диоды Шоттки с планарно-эпитаксиальной структурой на основе арсенида галлия АА204А…АА204В, предназначенные для детектирования в сантиметровом диапазоне длин волн.

5.3. Смесительные диоды СВЧ

Смесительный полупроводниковый диод – это полупроводниковый диод, предназначенный для преобразования высокочастотных сигналов в сигнал промежуточной частоты.

К смесительному диоду подводится сигнал и напряжение от специального генератора – гетеродина. В связи с нелинейностью ВАХ диода происходит образование сигнала разностной (промежуточной) частоты. Дальнейшее усиление входного сигнала осуществляется на этой промежуточной частоте, которая должна быть выше частот, соответствующим низкочастотным шумам, обратно пропорциональным частоте.


Основным параметром смесительных диодов, определяющим эффективность преобразования входных сигналов высокой частоты в сигналы промежуточной частоты, является параметр Lпрб называемый потери преобразования смесительного диода и равный отношению мощности СВЧ-сигнала на входе диодной камеры к мощности сигнала промежуточной частоты, выделяемой в нагрузке смесительного диода в рабочем режиме:

В большинстве приемных устройств СВЧ-диапазона отсутствуют усилители перед смесителем. Поэтому чувствительность всего приемного устройства, возможность различить полезный сигнал на фоне шумов зависят от уровня шумов смесительного диода. Уровень шумов смесительного диода (и других приборов) оценивают шумовым отношением nш – отношением номинальной мощности шумов диода в рабочем режиме к номинальной мощности тепловых шумов соответствующего активного сопротивления при той же температуре и одинаковой полосе частот.

Другим параметром, характеризующим шумы смесительного диода и других приборов и систем, является коэффициент шума – отношение мощности шумов на выходе к той ее части, которая вызвана тепловыми шумами источника сигнала:


Обобщенным параметром приемного устройства, в смесителе которого использован диод с определенными потерями преобразования и шумовым соотношением, является нормированный коэффициент шума – значение коэффициента шума приемного устройства со смесительным диодом на входе при коэффициенте шума усилителя промежуточной частоты Fупч, равном 1,5 дБ:

Одним из вспомогательных параметров смесительных диодов служит выпрямительный ток Iвп – постоянная составляющая тока, протекающая в выходной цепи диода в рабочем режиме. Этот параметр используется для контроля исправности смесительного диода и гетеродина приемника, от которого на смесительный диод подается определенная мощность СВЧ-колебаний с определенной длинной волны.

Другим вспомогательным параметром является коэффициент стоячей волны по напряжению СВЧ-диода Kст U – коэффициент стоячей волны по напряжению в передающей линии СВЧ, когда она нагружена на определенную диодную камеру с СВЧ-диодом в рабочем режиме. Чем лучше согласовано входное сопротивление камеры (с диодом) с волновым сопротивлением тракта, тем меньше коэффициент стоячей волны по напряжению и потери принимаемого сигнала.

5.4. Переключательные диоды СВЧ

Переключательный полупроводниковый диод – это полупроводниковый диод, предназначенный для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Принцип действия переключательного диода основан на большом различии полного сопротивления СВЧ-сигналу при прямом постоянном токе через диод и при обратном постоянном напряжении на диоде. Именно поэтому СВЧ-тракт (волноводная, коаксиальная или полосковая линия), следующий за переключательным устройством с диодом, может быть либо открыт, либо закрыт для СВЧ0сигнала. Например, в радиолокационных станциях с фазированными решетками, содержащими тысячи идентичных антенных элементов, переключательные диоды должны обеспечить подачу мощного СВЧ-импульса на каждый элемент в определенные моменты времени. При этом мощные импульсы передатчика не должны попадать в канал чувствительного приемника.

Отсюда ясны основные требования к переключательным СВЧ-диодам. Они должны с минимальными потерями пропускать СВЧ-мощность в состоянии пропускания и не пропускать – в состоянии запирания, обладать большой допустимой мощностью рассеяния, большим пробивным напряжением, малой собственной емкостью и достаточно большой скоростью переключения.

Обобщенным параметром переключательного диода является критическая частота fкр, которая характеризует эффективность переключательного диода и определяется по формуле: где Сстр – емкость структуры; rпр – прямое сопротивление потерь (активная составляющая полного сопротивления диода) при определенном прямом токе смещения; rобр – обратное сопротивление потерь при определенном обратном напряжении смещения.

Для увеличения допустимой мощности рассеяния диода необходимо увеличивать площадь выпрямляющего электрического перехода, что влечет за собой увеличение барьерной емкости. Поэтому большинство переключательных СВЧ-диодов имеет p-i-n-структуру, толщина p-n-перехода которой существенно увеличена из-за наличия между p- и n-областями слоя высокоомного полупроводника с собственной электропроводимостью (рисунок).

Практически p-i-n-структуру для переключательных СВЧ-диодов формируют на исходном кристалле кремния с проводимостью, близкой к собственной, т.е. либо с небольшой концентрацией акцепторов (p -слой), либо с небольшой концентрацией доноров (n -слой). Энергетическая диаграмма, распределение примесей, плотность объемного заряда и электрического поля в p-i-n- и p-p -n-структурах показаны на рисунке. Методы формирования этих структур различны: вплавление и диффузия примесей, эпитаксиальное наращивание, ионное легирование.

Диоды с p-i-n-структурой отличаются меньшей барьерной емкостью, которая к тому же очень слабо зависят от напряжения (особенно при больших концентрациях примесей в p- и n-областях). Практическая независимость емкости структуры от напряжения оказывается важным свойством переключательных диодов, так как изменение емкости с напряжением может вызвать дополнительные частотные искажения полезного сигнала.

Пробивное напряжение диодов с p-i-n-структурой достигает нескольких сотен вольт, что существенно превышает пробивное напряжение диодов с обычным p-n-переходом и с таким же уровнем легирования прилегающих областей.

Для переключательных СВЧ-диодов некоторых марок (2А523А-4 и др.) максимально допустимая мощность, которую может рассеять диод в непрерывном режиме, равна 20 Вт. Такие диоды представляют собой бескорпусные приборы с жесткими выводами – кристаллодержателями – и защитным покрытием. Диаметр их 2 мм, длина 3,6 мм.

Переключательный СВЧ-диод может работать при последовательном и при параллельном включении с линией передачи. В параллельной схеме при прямом смещении диод имеет небольшое сопротивление, шунтирующее линию, и большая часть СВЧ-мощности отражается обратно. Таким образом, при параллельной схеме для переключения СВЧ-тракта используют разницу в отражении, а не в поглощении. В самом диоде при этом поглощается незначительная часть падающей на него СВЧ-мощности, что позволяет относительно маломощному прибору управлять десятками и сотнями киловатт импульсной СВЧ-мощности.

Недостатками переключательных СВЧ-диодов с p-i-n-структурой является инерционность процесса рассасывания носителей заряда (электронов и дырок) из i-слоя при переключении диода с прямого направления на обратное, так как толщина i-слоя может составлять несколько десятков микрометров, а скорость движения носителей заряда ограничена.

Значительно большую скорость переключения можно получить при использовании диодов Шоттки, изготовленных на основе арсенида галлия. Однако уровень переключаемой СВЧ-мощности при этом на несколько порядков ниже, чем при применении переключательных СВЧ-диодов с p-i-n-структурой.

5.5. Биполярные СВЧ транзисторы

Граничная частота. Частотные свойства транзисторов обычно характеризуются граничной частотой fгр, которая связана со временем задержки сигнала τ от эмиттера до коллектора:

fгр =1/2πτ (5.1)

Время задержки

τ = τэ.п+ τб + τк.п+ τк, (5.2)

где τэ.п — время зарядки емкости эмиттерного перехода; τб — время пролета носителей заряда через базовую область; τк.п — время задержки в коллекторном переходе, связанное с временем пролета; τк — время зарядки емкости коллекторного перехода.

Уменьшение ширины базовой области примерно до 0,1 мкм снижает τб до единиц пикосекунд. В этом случае граничная частота в основном будет определяться τэ.п и τк.п, которые примерно равны 10 пс. Поэтому для увеличения fгр необходимо выдвигать дополнительные требования: уменьшение емкости эмиттерното перехода Сэ.п, ширины коллекторного перехода dк и сопротивления коллекторной области rк, влияющего на значение τ к.

Однако требования, предъявляемые к СВЧ транзисторам, противоречивы. Например, повышение концентрации примеси, необходимое для уменьшения ширины коллекторного перехода (уменьшения dк), приводит к росту емкости этого перехода. Уменьшение площади перехода для снижения его емкости будет сопровождаться падением мощности транзистора. Необходимого уменьшения величин rк и dк можно добиться повышением концентрации примеси, но при это τ м произойдет сужение коллекторного перехода, увеличится емкость, а кроме того, снизится напряжение пробоя и выходная мощность. Таким образом, повышение граничной частоты биполярного транзистора сопровождается падением мощности и важнейшим ограничением является напряжение пробоя коллекторного перехода, которое зависит и от выбора полупроводникового материала.

Рассмотрим предельный случай, когда граничная частота определяется только временем задержки сигнала в коллекторном переходе τк.п, т. е.

fгр =1/2π τк.п (5.3)

Доказано, что τк.п примерно равно половине времени пролета носителей в коллекторном переходе (τк.п ≈ τпр/2).

Дрейфовая скорость при увеличении напряженности поля сначала возрастает линейно, а затем стремится к предельному значению, называемому скоростью насыщения vн. Эта зависимость скорости от напряженности доля объясняется в § 7.1. Скорость vн определяется материалом полупроводника и типом носителей заряда (электрон, дырка). Так как дрейфовая скорость носителей в переходе не может превышать значения vн, то минимальное время пролета τпр=dк /vн а максимальная граничная частота (5.3)

fгр = vн dк (5.4)

Предположим, что поле Е в переходе однородное, а его значение, соответствующее началу пробоя, Епpoб. Тогда напряжение на переходе в начале пробоя Uпpoб ≈ Епpoб dк и (6.4) преобразуете к виду

fгр Uпpoб Епpoб vн /π (5.5)

Максимальная напряженность поля Епpoб и Uпpoб, связанные между собой, зависят от концентрации примеси и формы перехода. С ростом концентрации Епpoб увеличивается, а Uпpoб уменьшается. При увеличении концентрации примеси в резком переходе от 1014 до 1017 см -3 Епpoб изменяется в следующих пределах: у германия (1,5 — 3,1)•106 В/см, у кремния (3 — 6)•106 В/см, а у арсенида галлия (3,5—6,5)•106 В/см. Таким образом, Епpoб и Uпpoб у Si и GaAs почти одинаково и в 1,5 — 2 раза больше, чем у Ge. Скорость насыщения vн для электронов и дырок соответственно в Ge 6•106 и 8•106 см/с, в Si примерно равны 107 см/с, в GaAs — около 9•106 см/с. Произведение (5.5) составит для Ge, Si и GaAs примерно 200, 400 и 450 ГГц•B соответственно. Эти результаты можно заменить одним условием, ограничивающим частоту fгр:

fгрUпpoб ≤ 200ГГц•В.

При минимальном напряжении пробоя 2 В частота fгр ≈ 100 ГГц. Однако этот результат не может быть получен, так как в переходе значение поля не постоянно, а скорость не везде равна скорости насыщения. Кроме того, существуют конструктивные и технологические ограничения. Поэтому считают, что fгр. max ≈ 20 ГГц.

Влияние уровня инжекции на граничную частоту. На пути создания транзисторов с узкой базой имеются ограничения, связанные с большой плотностью тока в мощных транзисторах.

Одно из них состоит в том, что при большой плотности тока эмиттера возрастает напряжение, создаваемое базовым током на сопротивлении узкой базовой области (рис. 5.4). Если базовый электрод окружает эмиттер, то прямое напряжение на переходе в центре эмиттера, расстояние I от которого до базового электрода наибольшее (базовое сопротивление максимально), оказывается меньше, чем на периферии эмиттера. Поэтому ток в переходе будет существовать по периметру (эффект оттеснения тока эмиттера к периферии эмиттера). В этом случае площадь эмиттера используется неэффективно, в то время как емкость перехода определяется полной площадью. Таким образом, в мощных транзисторах целесообразно использовать очень узкие эмиттеры с большим общим периметром. Ширина эмиттерных полосок при плотности тока примерно 1000 А/см2 выбирается порядка нескольких микрометров.


Рис. 5.4


Рис. 5.5

Еще одним ограничением при создании узкой базы в транзисторах с большой плотностью тока является смещение границы базовой области в сторону коллекторной области. При большой плотности тока в pnp-транзисторе концентрация дырок в коллекторном переходе становится сравнимой с концентрациями донорной и акцепторной примесей. В сечении, где распределение объемного заряда в переходе проходило ранее через нуль, теперь будет существовать положительный заряд дырок. Это означает, что весь коллекторный 'переход сместился в сторону коллекторной области, т. е. увеличилась ширина базовой области. Последнее приводит к росту рекомбинации инжектированных дырок в базовой области, снижению коэффициента передачи тока и уменьшению граничной частоты fгр вследствие роста времени пролета носителей в базовой области.

При большой плотности тока приходится также учитывать влияние сопротивления коллекторной области, так как обычно последняя является высокоомной и изготавливается путем эпитаксиального наращивания n-слоя на низкоомной подложке (n+-область). На рис. 6.5 показано типичное распределение концентрации основных носителей заряда в транзисторе с высокоомной коллекторной областью, которая необходима для уменьшения емкости коллекторного перехода и повышения напряжения пробоя. Однако с ростом коллекторного тока увеличивается падение напряжения на сопротивлении эпитаксиальной коллекторной n-области и напряжение на самом переходе уменьшается. Это вызовет уменьшение ширины коллекторного перехода, т. е. нежелательное расширение базовой области. При некотором токе коллектора напряжение на переходе пройдет через нулевое значение и транзистор из активного (усилительного) режима перейдет в режим насыщения.

Технологические ограничения. Формула (5.5) устанавливает для граничной частоты теоретический предел, который пока не достигнут. При выборе полупроводникового материала предпочтение отдается кремнию по технологическим соображениям. Главное преимущество кремния состоит в том, что появляющаяся на нем двуокись кремния может использоваться как маска в процессе диффузии примесей или как изолирующее диэлектрическое покрытие. Окислы германия и арсенида галлия менее стабильны, чем двуокись кремния.

Важными электрофизическими свойствами полупроводников, определяющими параметры транзистора, являются подвижность электронов и дырок, диэлектрическая постоянная и теплопроводность. Подвижность определяет время пролета носителей, в базе и сопротивления областей базы и коллектора. Чем меньше эти величины, тем выше коэффициент усиления и меньше коэффициент шума транзистора на СВЧ.

В GaAs подвижность электродов примерно в 4 раза больше, чем в кремнии, и поэтому GaAs является более предпочтительным материалом. Однако из-за технологических трудностей он не получил применения в биполярных транзисторах.

Диэлектрическая постоянная, влияющая на емкость переходов составляет для кремния, арсенида галлия и германия 11,7; 11,1 и 16 соответственно. Но по теплопроводности кремний в 2 раза превосходит GaAs и поэтому обычно используется для изготовления мощных транзисторов.

Сравнивая же кремний и германий, следует отметить такие преимущества кремния, как более высокая скорость насыщения электронов и большая напряженность поля пробоя.

Технология изготовления приборов на основе кремния хорошо разработана и позволяет создавать СВЧ транзисторы с высоким процентом выхода годных и с хорошей надежностью. Глубину диффузии примесей (мышьяка, фосфора и бора) в кремнии можно контролировать при планарной технологии с точностью 0,1 мкм, а достижимые на практике уровни легирования оказались особенно удобными для создания кремниевых nрn -транзисторов.

Выполняются СВЧ транзисторы по планарной технологии таким образом, чтобы отношение периметра эмиттера к его площади было наибольшим. Последнее достигается в транзисторе с гребенчатой и многоэмиттерной структурами и в многоструктурных транзисторах. В гребенчатой структуре (рис. 6.6 а) чередуются эмиттерные и базовые области, имеющие форму узких полосок. В многоэмиттерной структуре (ряс. 5.6 б) вместо каждой эмиттерной полосковой области используется ряд небольших прямоугольных эмиттеров, соединенных металлическими полосками. Между эмиттерами находятся полосковые выводы от общей базовой области. Применяются также многоструктурные транзисторы, которые по существу являются объединением ряда многоэмиттерных или гребенчатыхсекций.

а) б)

Рис. 5.6

Отношение периметра к площади эмиттера с гребенчатой структурой доходит до 250 мм/мм2. Дальнейшее увеличение отношения требует изготовления полосок с шириной менее 1 мкм.

Для СВЧ транзисторов большое значение имеет точность воспроизведения элементов — ширины эмиттерных полосок, расстояния между эмиттерными и базовыми полосками, коллекторных площадок. Максимальная разрешающая способность при фотолитографии соответствует получению ширины эмиттерных полосок 1 мкм. Для воспроизведения меньших размеров следует применять электронно-лучевую литографию. Вследствие меньшей длины волны электронного излучения можно получить полоски и промежутки с разрешением 0,1 мкм, что позволяет повысить рабочую частоту транзистора.

Для мощных СВЧ транзисторов важной является задача равномерного распределения тока и теплоотвода. В этих транзисторах наблюдается вторичный пробой (первичным называют пробой коллекторного перехода при обратном напряжении эмиттерного перехода) - Вторичный пробой может следовать за первичным, но может возникать самостоятельно при прямом включении эмиттерного перехода.

Вторичный пробой коллекторного перехода связан с перераспределением тока в сечении прибора и его концентрацией в локальных областях. Вторичный пробой характеризуется резким увеличением коллекторного тока и, как правило, приводит к выходу прибора из строя из-за образования локальных областей перегрева. В случае прямого включения эмиттерного перехода перераспределение тока может быть связано с оттеснением тока эмиттера к периферии, с неравномерностью инжекции, вызванной неодинаковостью падения напряжения на различных эмиттерных полосках или наличием дефектов структуры.

Применение гребенчатой и многоэмиттерной структур обеспечивает и равномерность распределения тока. Однако для улучшения равномерности последовательно с полосковыми эмиттерами в гребенчатой структуре или полосками в многоэмиттерной структуре включаются резисторы, ограничивающие ток при прямом включении эмиттерного перехода. Для борьбы со вторичным пробоем при обратном включении эмиттерного перехода следует затруднить развитие первичного (лавинного) пробоя коллекторного перехода. С этой целью эпитаксиальный высокоомный слой коллекторной области делают достаточно толстым. Следует также снижать тепловое сопротивление участка коллекторный переход – корпус.

Параметры биполярных СВЧ транзисторов. Основными параметрами являются рабочая частота, коэффициент усиления по мощности, выходная мощность, КПД и коэффициент шума. При этом коэффициент шума важен только для маломощных (малошумящих) транзисторов, а КПД — для мощных СВЧ транзисторов.

На граничной частоте fгр, при которой коэффициент передач по току в схеме с общим эмиттером равен единице, имеется еще значительное усиление по мощности. Поэтому дополнительно используется характеристическая частота fmaxмаксимальная частота генерации, на которой коэффициент усиления по мощности равен единице при условии компенсации действия внутренней обратной связи (без внесения потерь) и согласования на входе и выходе. В этом случае:

(5.6)

где r'б объемное сопротивление базы; Ск — емкость коллекторного перехода; α0 — коэффициент передачи тока эмиттера(h21б).

Если ширины эмиттерных, базбвых полосок и промежутков между ними одинаковы и равны s, длина l, а удельные (на единицу площади) сопротивление базы r0 и емкость коллектора С0, то r'Б r0s/l, Cк С0sl. Поэтому (5.6) приводится к виду:

Следовательно, fmax увеличивается с уменьшением размера s. Это подтверждает необходимость уменьшения ширины полосок и зазоров в транзисторных структурах.

Зависимость коэффициента шума от частоты показана рис. 5.7 горизонтальный участок кривой объясняется в основном тепловыми шумами объемного сопротивления базы r'б. Чем выше граничная частота транзистора fгр, тем протяженней участок кривой с наименьшим коэффициентом шума. Коэффициент шума зависит также от сопротивления источника сигнала, при этом существует оптимальное сопротивление при котором Kш достигает минимального значения. Существует также оптимальное значение тока эмиттера. Следует отметить, что условия, при которых коэффициент шума имеет минимальное значение, могут не совпадать с условиями получения максимального коэффициента усиления.

Рис. 5.7

Рис. 5.8

На рис. 5.8 приведены для различных частот значения коэффициентов усиления Ку и шума Кш маломощных биполярных транзисторов с минимальным коэффициентом шума (БТ1) и с максимальным коэффициентом усиления (БТ2). В диапазоне частот 4 — 8 ГГц Кш min=2÷4 дБ, а Ку max = 5 ÷ 3 дБ. Усилители на малошумящих биполярных транзисторах конкурируют с малошумящими ЛБВ и превосходят последние по шумовым свойствам, габаритам, массе и долговечности.

Выходная мощность мощных биполярных транзисторов при переходе от 1 до 4 ГГц падает от 35 — 40 до 5 Вт. Коэффициенты усиления в этом диапазоне составляют 10 — 5 дБ.

Применение в транзисторных СВЧ генераторах варикапов или ферритовых элементов для электрической перестройки частоты позволяет заменять ими лампы обратной волны. Генераторы с варикапами обладают большой скоростью, но малой линейностью перестройки, например ±10%. Если в качестве феррита используется железо-иттриевый гранат (ЖИГ), то линейность перестройки высокая (примерно ±0,3%), но скорость перестройки мала. Диапазон электрической перестройки частоты транзисторных СВЧ генераторов достигает октавы.

5.6. Полевые СВЧ транзисторы

В последние годы возросла роль полевых транзисторов в СВЧ диапазоне, но сравнению с биполярными транзисторами в связи с разработкой полевых транзисторов с барьером Шотки на арсениде галлия. Устройство такого, транзистора показано на рис. 5.9. Затвор представляет собой барьер Шотки, изготовленный на эпитаксиальной пленке из арсенида галлия n-типа. Пленка выращивается на полуизолирующей подложке из того же материала. Затвор, расположенный между истоком и стоком, имеет обычно конфигурацию замкнутого кольца или квадрата. Характерные размеры: ширина затвора 0,2 – 2 мм, длина затвора 0,5 – 2 мкм, толщина эпитаксиальной пленки 0,15 – 0,5 мкм.

Для получения омических контактов истока и стока используются сплавы на основе золота и серебра с соответствующими легирующими добавками. Барьер Шотки получают нанесением металлов (платина, хром, никель, молибден и др.) или сплавов.

Рис. 5.9

Резкое улучшение частотных свойств полевых транзисторов произошло благодаря применению арсенида галлия с высокой подвижностью электронов, уменьшению длины затвора до 1 мкм и использованию более тонких и более высоколегированных эпитаксиальных пленок арсенида галлия.

Для транзисторов с малой длиной канала частота fmax, на которой коэффициент усиления по мощности равен единице, определяется минимально возможным значением времени пролета τmin, т. е.

(5.7)

Значение τmin соответствует максимальной скорости носителей – скорости насыщения υн , поэтому при длине канала L τ= L/υн , а из (5.6)

(5.8)

Следовательно, GaAs, имеющий большее значение υн, чем у кремния и германия, является предпочтительным материалом для изготовления полевых транзисторов.

Уменьшение длины затвора приводит к уменьшению времени пролета электронов в канале и к снижению емкости затвора. Эта емкость может быть также уменьшена изготовлением полуизолирующего слоя между затвором и эпитаксиальной пленкой арсенида галлия (каналом).

Важным направлением в разработке маломощных полевых транзисторов с барьером Шотки на арсениде галлия является снижение коэффициента шума. Основные источники шума в этом транзисторе — тепловой шум в канале, индуцированный шум затвора и шум паразитных (пассивных) элементов. Тепловой шум в канале — это тепловой шум сопротивления проводящей части канала. Индуцированный шум затвора является следствием шума в канале, так как любая флуктуация потенциала в канале вызывает флуктуацию напряжения между затвором и каналом. Эти шумы при коротких каналах сильно коррелированны (коэффициент корреляции близок к единице). Шумы пассивных элементов связаны с сопротивлением затвора и истока и по своей природе тепловые. Так как шумы в активной области полевых транзисторов с барьером Шотки очень малы, то шумы пассивных элементов дают больший относительный вклад в общий шум, чем в биполярных транзисторах.

Особенностью полевых транзисторов является большое различие сопротивлений источника сигнала, необходимых для получения максимального коэффициента усиления и минимального коэффициента шума. Это приводит к тому, что при минимальном коэффициенте шума коэффициент усиления примерно в 2 раза меньше максимально возможного. Однако в этом случае коэффициент усиления еще достаточно велик (8 – 15 дБ). Необходимо отметить, что существует также трудность согласования полевого транзистора со стандартным СВЧ трактом, особенно на частотах ниже 1 – 2 ГГц. В связи с этим приходится увеличивать ширину затвора, хотя последнее и приводит к увеличению емкости и сопротивления металлизации затвора.

Существуют полевые транзисторы с коэффициентом шума Кш=З,7 дБ и усиления Ку=12,8 дБ на частоте 10 ГГц. Длина затвора этих транзисторов 0,5 мкм, а ширина 200 мкм. Имеются приборы, у которых Кш=2,6 дБ на частоте 4 ГГц (длина затвора 1,5 мкм, ширина – 1,8 мм).

Рис. 5.10

На рис. 5.10 сравниваются коэффициенты усиления Ку и шума Кш полевых транзисторов с барьером Шотки (ПТБШ) и биполярных транзисторов с минимальным коэффициентом шума (БТ1) и максимальным коэффициентом усиления (БТ2).

Для мощных полевых транзисторов требование низкого уровня шума не существенно. Применение арсенида галлия с большой шириной запрещенной зоны (1,4 эВ) позволяет повысить рабочую температуру вплоть до 350°С.

В мощных полевых транзисторах необходимо обеспечить высокое напряжение пробоя затвора, низкоомные контакты истока и стока, а также возможно большее значение периметра истока.

Повышение напряжения пробоя достигается использованием умеренного легирования области канала: см –3, а также созданием области повышенного сопротивления между затвором и стоком без ухудшения крутизны транзистора. Низкоомные контакты истока и стока получаются путем вплавления пленок золото–германий или созданием низкоомных эпитаксиальных областей (n+-области). Увеличение периметра истока возможно в результате изготовления многоканальных структур с несколькими контактными площадками затвора, так как обычное увеличение длины истока и затвора ухудшает параметры полевого транзистора из-за роста сопротивления металлизации контактов. Существуют сетчатые и гребенчатые затворы, подобно тому, как это делается в биполярных СВЧ транзисторах.

Применение многоканальных структур обеспечивает повышение мощности полевых транзисторов. Созданы варианты мощных многоканальных полевых транзисторов с управляемым p–n–переходом с горизонтальной и вертикальной структурами. В транзисторах с горизонтальной структурой каналы располагаются параллельно полупроводниковой подложке, как на рис. 1, а в транзисторах с вертикальной структурой они перпендикулярны плоскости подложки.

Мощность полевых транзисторов на арсениде галлия с барьером Шотки уже превышает мощность биполярных транзисторов: 1,6 Вт и КПД 45% на частоте 8 ГГц. Ожидается, что в трехсантиметровом диапазоне волн будет получена мощность 10 Вт. Эти транзисторы становятся конкурентами с ЛБВ, имея перед последними преимущество в габаритах, КПД и простоте источников питания.

Наибольшее применение полевые транзисторы на GaAs с барьером Шотки нашли в малошумящих СВЧ усилителях. В диапазоне 4 – 20 ГГц они являются лучшими по шумовым и усилительным характеристикам, чем другие приборы того же назначения. Большой динамический диапазон и хорошие шумовые характеристики позволяют использовать их в смесителях. В последнее время наметилась тенденция к широкому внедрению полевых транзисторов с барьером Шотки в усилителях, предназначенных для замены ламп бегущей волны и в параметрических усилителях. Низкий коэффициент шума, малая пульсация коэффициента усиления (0,05 дБ на 10 МГц), небольшие изменения групповой задержки этих транзисторов позволяют произвести замену ЛБВ в телевизионной системе с частотной модуляцией.

В последнее время значительный интерес проявляется к охлаждаемым усилителям на полевых транзисторах из GaAs с барьером Шотки. Так как шумы в этих приборах в основном имеют тепловую природу, то охлаждение приводит к существенному уменьшению коэффициента шума. При этом, в отличие от биполярных транзисторов, коэффициент усиления увеличивается. Трехкаскадный усилитель для спутниковой связи США в диапазоне 11,7–12,2 ГГц имеет при комнатной температуре коэффициент шума 5,3 дБ, а коэффициент усиления 18 дБ. Охлаждение усилителя до 40 К снижает Кш до 1,6 дБ и увеличивает Ку до 31 дБ, что сравнимо с параметрами неохлаждаемых параметрических усилителей.

Малошумящие усилители на полевых транзисторах из GaAs с барьером Шотки по сравнению с параметрическими усилителями характеризуются простотой настройки, высоким постоянством усиления, большой мощностью насыщения.

Контрольные вопросы.

  1. Конструктивные особенности полупроводниковых диодов СВЧ.
  2. Особенности работы полупроводниковых диодов в диапазоне СВЧ.
  3. Особенности устройства СВЧ биполярных транзисторов (БТ).
  4. Особенности устройства СВЧ полевых транзисторов (ПТ).
  5. Факторы, ограничивающие рабочие частоты БТ.
  6. Факторы, ограничивающие рабочие частоты ПТ.
  7. Пути улучшения частотных свойств ПТ и БТ.
  8. Пути повышения выходной мощности БТ и ПТ на СВЧ.
  9. Приборы СВЧ и оптического диапазона


*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.