Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

9. Оптимальная фильтрация дискретных сигналов. Теория электрической связи

Теория электрической связи

9. Оптимальная фильтрация дискретных сигналов

Оптимальный приемник (рис.9.1) является корреляционным, сигнал на его выходе представляет собой функцию корреляции принимаемого сигнала x(t) и ожидаемого Si(t), благодаря чему обеспечивается максимально - возможное отношение сигнал/шум h20.

Поскольку операция определения функции корреляции является линейной, ее можно реализовать в некотором линейном фильтре, характеристики которого (комплексная передаточная характеристика K(jw) и импульсная характеристика g(t) являются такими, что отношение сигнал/шум на его выходе получается максимальным, причем h2max = h20.

Найдем характеристики фильтра, когда помеха n(t) является флюктуационной со спектральной плотностью Gn(w) = N0,, w ³ 0.

Пусть сигнал на входе фильтра имеет комплексный спектр S(jw). Тогда сигнал на выходе фильтра y(t) можно определить с помощью преобразования Фурье

Нас интересуют значение y(t) в момент принятия решения (момент отсчета t0), поэтому, заменив t на t0, получим

(9.1)

Чтобы получить максимальную величину y(t0), нужно найти оптимальную характеристику фильтра k(jw). Для этой цели можно воспользоваться известным неравенством Шварца-Буняковского, имеющим вид

Легко проверить, что данное неравенство превращается в равенство при условии,что

где a - любая произвольная постоянная. В нашем случае, применительно к формуле (9.1), величина y(t0) будет максимальной при условии

(9.2)

(это уже есть условие оптимальности характеристики K(jw), поэтому здесь и в дальнейшем K(jw) заменено на Kopt(jw) ).

Подставляя в левую часть формулы (9.2)

(9.3)

(9.4)

получаем

или, сокращая на S(w), будем иметь

. (9.5)

Последнюю формулу можно представить в виде двух составляющих, позволяющих найти амплитудно-частотную характеристику оптимального фильтра Kopt(w) и фазо-частотную характеристику jk(w):

; (9.6)

(9.7)

откуда (9.8)

Здесь js(w) - фазо-частотный спектр входного сигнала; wt0 - "запаздывающий" множитель, учитывающий то, что "отсчет" величины сигнала на выходе фильтра производится в момент t0 , когда возникает максимум выходного сигнала фильтра.

Условие (9.6) имеет простой физический смысл: фильтр должен лучше пропускать составляющие спектра сигнала, имеющие большую амплитуду и в меньшей степени пропускать составляющие сигнала, имеющие меньшую амплитуду.

Условие (9.7) имеет также простой физический смысл: в момент отсчета (t0) все частотные составляющие спектра выходного сигнала имеют нулевую фазу, благодаря чему выходное напряжение в момент t0 имеет наибольшее отношение мощности сигнала к мощности помехи .

Условия (9.6) и (9.8) можно объединить в одно, представив передаточную характеристику в комплексной форме

(9.9)

Можно, наконец, последнюю формулу представить в следующем виде

(9.10)

Здесь S*(jw) - комплексно-сопряженный спектр по отношению к S(jw).

Отношение сигнал/помеха определяется , как обычно, формулой

(9.11)

где - мощность сигнала на выходе фильтра в момент t0 ;

(9.12)

мощность (дисперсия) помехи на выходе фильтра,

Dfopt - эффективная полоса пропускания оптимального фильтра.

Подставляя в (9.11) выражения (9.1) и (9.12) с учетом (9.2), получим

(9.13)

где энергия сигнала S(t) на входе фильтра.

Из (9.13) видно, что отношение h2(t0) численно равно отношению энергии сигнала к спектральной плотности помехи (как в приемнике Котельникова) и не зависит от формы сигнала. А так как энергия сигнала равна произведению мощности сигнала на его длительность, то для повышения помехоустойчивости систем связи с использованием согласованных фильтров можно увеличивать длительность элементарных сигналов, что и делается в широкополосных системах связи.

При применении в демодуляторе приемника согласованных фильтров в сочетании с когерентным способом приема можно добиться потенциальной помехоустойчивости.

Импульсная характеристика оптимального фильтра (отклик фильтра на дельта-функцию) определяется известным выражением

Подставив сюда значение Kopt(jw) из (9.10), получим

Интегрирование в последней формуле производится по всем частотам от -¥ до +¥; поэтому знак перед w в этой формуле можно заменить на противоположный, что не приведет к изменению результата вычисления интеграла. В результате получим

(9.14)

А так как, на основании преобразования Фурье

(9.15)

то, сравнивая (9.14) и (9.15), получаем

(9.16).

Таким образом, функция g(t) отличается от сигнала S(t) только постоянным множителем а , смещением на величину t0 и знаком аргумента t (то есть функция g(t) является зеркальным отображением сигнала S(t) , сдвинутым на величину t0.

На рис. 9.2 в качестве примера приведен некоторый сигнал S(t), зеркально перевернутый сигнал S(- t) и функция g(t) = aS(t0 - t).

Как уже говорилось, величину t0 обычно берут равной длительности сигнала Т. Если взять t0 < T, то получается физически неосуществимая система (отклик начинается раньше поступления входного воздействия).

Сигнал y(t) на выходе линейной системы при поступлении на ее вход сигнала x(t) определяется известным интегралом Дюамеля

. (9.17)

Пусть на вход оптимального фильтра поступает аддитивная смесь, содержащая сигнал S(t) , с которым фильтр согласован, и помеха n(t) ( это может быть флюктуационная помеха или какой-нибудь детерминированный сигнал, с которым фильтр не согласован) x(t)=S(t)+n(t) ,

Подставляя x(t) и (9.16) в (9.17), получим

, (9.18)

заменяя t­0 на Т, получим

(9.19)

Таким образом, на выходе согласованного фильтра получаем под действием сигнала функцию корреляции сигнала, а под действием помехи функцию взаимной корреляции сигнала и помехи. Если на входе фильтра только помеха(без сигнала), на выходе получаем только функцию взаимной корреляции помехи и сигнала, с которым фильтр согласован.

В формуле (9.19) а - любой произвольный множитель, поэтому произведение а Т можно заменить на произвольный множитель b. В момент времени t=T (момент отсчета) формула (9.19) дает

(9.20)

Примечание. Если на вход согласованного фильтра поступает флюктуационная помеха, то теоретически функция взаимной корреляции Bsn(0) должна быть равна нулю, так как сигнал и помеха являются независимыми функциями времени. Однако на практике Bsn¹ 0 , так как при вычислении функции взаимной корреляции требуется бесконечно большое время интегрирования. В нашем же случае интегрирование ведется за время, равное Т. Поэтому формулы (9.19) и (9.20) являются приближенными.

Результаты фильтрации не зависят от формы сигнала. Следовательно фильтр может быть применен и без детектора. Тогда оптимальный приемник полностью известных сигналов (рис. 6.1) может быть реализован в виде двух согласованных фильтров - СФ 1 , СФ 2 и устройства сравнения - УС (рис.9.3).

Примеры согласованных фильтров.

Рассмотрим согласованный фильтр для прямоугольного импульса длительности Т (рис 9.4 а).

Спектральная плотность такого импульса равна

.

Для согласованного фильтра, в соответствии с (9.10) для случая t0 = T

(9.21)

Пользуясь последним выражением, можно легко построить схему фильтра для данного случая. Так из теории электрических цепей известно, что деление на jw означает интегрирование сигнала, а множитель е-jwT означает задержку сигнала на время Т. В результате схема фильтра будет содержать интегратор, линию задержки и вычитатель (рис. 9.4).

Таким образом, на выходе фильтра получился треугольный импульс с основанием (это - функция корреляции входного импульса прямоугольной формы). То, что выходной импульс имеет в два раза большую длительность, чем входной, является недостатком оптимального фильтра, так как "хвост" выходного сигнала на отрезке времени от Т добудет накладываться на выходной сигнал следующего импульса. Поэтому на практике часто применяют упрощенную схему фильтра, содержащую интегриру ющую RC -цепь (RC>> T) и ключ К (рис. 9.5).

В момент T окончания входного импульса ключ К замыкается, конденсатор интегратора быстро разряжается через ключ и схема оказывается готовой к приему следующего импульса.

Оптимальный фильтр для приема радиоимпульсов с прямоугольной огибающей может быть построен аналогичным образом, однако RC - цепочка должна быть заменена колебательным контуром с достаточно высокой добротностью. Фильтры с ключами называются "кинематическими" фильтрами.

Теория электрической связи





Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru