Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->
Обязательно посмотрите энциклопедию:

Радиоэлектроника, Схемы радиолюбителям


3. Отношение правдоподобия. Теория электрической связи

Теория электрической связи

3. Отношение правдоподобия

Различение сигналов в приемном устройстве обычно осуществляют путем установления некоторого "порога" на выходе приемника, фактически играющего роль "границы подпространств" сигналов S1 и S2.

На рис. 3.1. приведен некоторый дискретный сигнал х(t) (импульсы постоянного тока), на который накладывается флюктуационная помеха и проведена пунктирная линия, соответствующая выбранному порогу хп.

Если величина x(t) < xп , приемник выдает сигнал S1, если же x(t) > xп , приемник выдает сигнал S2. Как видно из рисунка, на отрезке времени t1, t2 под действием сильной помехи величина х > xп , т. е. в этом случае приемник может выдать сигнал S2 , хотя передавался S1.

Различные критерии приема дискретных сигналов фактически отличаются способом установления величины порога. Данная задача проще всего решается с помощью "отношения правдоподобия". Для рассмотрения этого вопроса обратимся к рис. 3. 2.

Если бы на входе приемника отсутствовали помехи, мы имели бы дело с "чистыми" сигналами S1 и S2 и задача разделения сигналов была бы очень проста. При наличии же помех сигналы искажаются и для их описания приходится использовать вероятностное пространство. Сами сигналы вместе с помехами описываются уже функциями плотности вероятности w(x/S1) и w(x/S2), которые изображены на рис. 3.2. (эти функции умножены также на весовые коэффициенты П12Р(S1) и П21Р(S2)). На этом же рисунке показан порог хп.

Заштрихованная часть рисунка левее хп имеет площадь, равную

П21Р(S2)w(x/S2)dx = П21Р(S2)P(x/S2), (3.1)

а заштрихованная часть правее хп имеет площадь, равную

П12Р(S1)w(x/S1)dx = П12Р(S1)P(x/S1), (3.2)

Сумма этих величин, в соответствии с формулой (2.1), есть средний риск Rср. Из рис. 3.2. видно, что Rср будет минимальным, когда минимальна суммарная площадь под кривыми. Это будет в том случае, если величина хп соответствует точке пересечения кривых на рис. 3.2. Следовательно, условием получения min{Rср} является такой порог хп, при котором наступает равенство ординат приведенных кривых, т. е.

П12Р(S1)w(x/S1)dx = П21Р(S2)w(x/S2), (3.3)

откуда получаем следующее соотношение:

. (3.4)

Стоящее слева выражение называется отношением правдоподобия

l(х) = , (3.5)

а w(x/S i), которая представляет собой плотность вероятности того, что принятый сигнал х образовался при передаче сигнала Si , обычно называется функцией правдоподобия (функцией правдоподобия является также любая монотонная функция от w(x/Si), например log[ w(x/Si)]).

Чем больше значение w(x/S i), тем более вероятно, что х содержит сигнал Si (это очевидно из рис. 3.2). Справа стоящее выражение называется пороговым отношением правдоподобия

l0 = . (3.6)

Приемник, использующий отношение правдоподобия, работает следующим образом.

1. Анализируя поступающий на его вход сигнал, вычисляет отношение правдоподобия l(х).

2. По известным значениям априорных вероятностей Р(S1) и P(S2), а также заданным весовым коэффициентом П21 и П12, вычисляется пороговое отношение правдоподобия l0.

3. Величина l(х) сравнивается с l0,

если l(х) > l0, приемник выдает сигнал S1, в противном случае сигнал S2 . (3.7)

Выражение (3.7) является правилом решения Ф(х) решающего устройства, показанного на рис.1.3.

Правило решения (3.7) является общим для двоичных систем связи, использующих любой критерий оптимального приема ; отличие только в значении порога l0 .

Если приемник работает по критерию минимального среднего риска, величина l0 определяется формулой (3.6).

Для критерия идеального наблюдателя, в этой формуле коэффициенты

П12 = П21 = 1 и тогда l0 = P(S2)/ P(S1) , (3.8)

Для критерия максимального правдоподобия

П12 = 1/ P(S1) , П21 = 1/ Р(S2), тогда l0 =1. (3.9)

Если приемник использует критерий Неймана-Пирсона, то отношение правдоподобия l(х) становится случайной величиной, так как в равенстве (3.1) Р(у1/S2) = a (задается потребителем). Пороговое отношение правдоподобия определяется как верхний предел интеграла

(3.10)

где w(l) - плотность распределения отношения правдоподобия l(х).

Правило принятия решения приемником с использованием отношения правдоподобия рассмотрим на следующих примерах.

Условия задачи.

Пусть на вход приемника поступает аддитивная смесь сигнала (дискретная амплитудная модуляция) и помехи:

, где i=1,2;

n(t) - флюктуационная помеха типа гауссовского шума с дисперсией .

На протяжении длительности одной элементарной посылки в решающей схеме приемника в синхронные моменты времени t1 и t2 произведено два отсчета(замера) сигнала x(t), причем Dt = t2-t1 больше интервала корреляции помехи n(t). Измеренные значения x(t1)= x1= 0,2 B; x(t2)= x2= 0,3 B. Амплитуда сигнала A=0,4 B.

Определить отношение правдоподобия и принять решение по критерию идеального наблюдателя, какой из двух сигналов (S1 или S2) поступил на вход приемника для двух случаев:

а) ;

б) ; .

Решение задачи(когерентный прием).

1. Найдем отношение правдоподобия .

Плотность вероятности сигнала x(t)=S1(t)+n(t) имеет вид

.

Так как на протяжении элементарного сигнала производятся два отсчета, то для нахождения отношения правдоподобия требуется найти двухмерную плотность вероятностей w2(x1x2/s1). Учитывая, что отсчеты некоррелированы (Dt больше интервала корреляции), а помеха распределена по гауссовскому закону, эти отсчеты можно считать независимыми. В этом случае двухмерная плотность вероятностей равна произведению одномерных плотностей

.

Аналогично

.

Отношение правдоподобия

.

Подставляя численные значения A,sn, x1, x2, получим: l (0,2;0,3)= 2,7.

2. Применяем правило решения (3.7 ).

а) Пороговое отношение правдоподобия при P(s1)=P(s2)=0,5

.

В нашем случае l(x1x2)=2,7 > l0=1 и приемник выдает сигнал S1.

б) Пороговое отношение правдоподобия при P(s1)=0,2 и P(s2)=0,8

.

В этом случае l(x1x2)=2,7 < l0=4 и приемник выдает сигнал S2.

Полученные результаты вполне объяснимы: в случае a) измеренное значение x(t1)=0,2B соответствует половине амплитуды А=0,4В, а измеренное значение x(t2)=0,3B ближе к сигналу S1, поэтому при равной вероятности сигналов приемник выдает решение в пользу сигнала S1; в случае б) измеренные значения сигнала ближе к S1, но зато сигнал S2(t) встречается в 4 раза чаще, чем сигнал S1(t), и точное решение задачи с учетом всех обстоятельств во втором случае получается в пользу сигнала S2.

Решение задачи(некогерентный прием).

Решим эту же задачу в предположении, что в приемнике используется обычный амплитудный детектор .

Найдем отношение правдоподобия для этого случая. Плотность вероятности x(t) при передаче сигнала S1(t) определяется обобщенным законом Релея

,

а плотность вероятности x(t) при передаче сигнала S2(t) определяется простым законом Релея

.

Как и в предыдущем примере, отношение правдоподобия будет определяться отношением двухмерных плотностей вероятности. После простых преобразований получаем

.

Подставляя сюда численные значения А, sn, x1, x2, получим

.

Как и в предыдущем примере, а) l0=1 и б) l0=4.

В обоих случаях l(x1x2)<l0 и в обоих случаях приемник выдает решение в пользу сигнала S2(t).

Сравнивая случаи принятия решения решающей схемой приемника при когерентном и некогерентном приеме, невольно возникает вопрос: почему получаются разные результаты в случае а).

Дело в том, что при когерентном приеме сигналы x(t) распределены по гауссовскому закону и оптимальный порог xo, определяемый точкой пересечения функций P(S1)×w(x/s1) и P(S2)×w(x/s2) (рис. 3.3), в этом случае (когда P(S1) =P(S2) и l0=1) соответствует половине амплитуды сигнала S1(t); измеренные же значения сигнала x(t) близки к пороговому значению и ближе к сигналу S1(t). Однако при некогерентном приеме сигналы x(t) распределены по законам Релея и оптимальный порог xo значительно выше, чем половина амплитуды сигнала S1(t) (рис. 3.4). Поэтому те же измеренные значения x(t1) и x(t2) оказываются дальше от порога в области сигнала S2(t) и решающая схема приемника при заданных в условиях задачи вероятностях сигналов S1(t) и S2(t) выдает решение в пользу сигнала S2(t).

Учитывая, что при когерентном приеме уровень помех на входе решающей схемы существенно ниже, чем при некогерентном, более вероятно, что ошибочное решение принял некогерентный приемник.

Теория электрической связи






© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки. Карта сайта

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru