5. Фотоприемники оптических систем передачи

5.1. Определение фотодетектора. Виды фотодетекторов. Требования к фотодетекторам

Фотодетектором (фотоприёмником) называют устройство, преобразующее оптическую энергию в электрическую.

В фотодетекторах используются два фотоэффекта: фотогальванический и фотопроводимости.

Приборы на основе фотогальванического эффекта: фотодиоды, фототранзисторы, солнечные элементы.

Эффект фотопроводимости используется в фоторезисторах.

К фотодетекторам оптических систем связи предъявляются следующие требования:

  • высокая чувствительность;
  • требуемые спектральные характеристики и широкополосность;
  • низкий уровень шумов;
  • требуемое быстродействие;
  • длительный срок службы;
  • использование в интегральных схемах совместно с оптическими усилителями.

В большой степени этим требованиям отвечают фотодиоды.

Фотодиод – прибор, электрические свойства которого изменяются под действием падающего на него излучения.

В технике оптической связи наибольшее применение получили p-i-n фотодиоды и лавинные фотодиоды (ЛФД). Перспективными приборами для высокоскоростных систем являются фотодиоды бегущей волны TAP (Travelling-Wave Photodetectors), используемые на скорости от 10Гбит/с до 160Гбит/с и выше. В этих приборах, фотодетектирование сочетается с оптическим усилением в полупроводниковом оптическом усилителе [109, 123].

5.2. Фотодиоды конструкции p-i-n. Принцип действия, основные характеристики

Фотодиоды p-i-n отличаются простотой конструкции, высокой надежностью, низкой стоимостью.

Пример конструкции p-i-n фотодиода приведен на рисунке 5.1.

В p-i-n фотодиоде между областями с проводимостями р+ (база) и n+ (коллектор) расположен слой i (слой поглощения фотонов) собственной проводимости полупроводника (i – intrinsic). Фотоны вводятся в детектор через окно, имеющее тонкий слой просветляющего покрытия (толщина около l /4) с показателем преломления , согласующим разные среды – стекловолокно (nОВ » 1,46) и полупроводник
(nПП » 3,5). В базе и коллекторе повышена концентрация носителей зарядов. В слое поглощения может создаваться некоторый примесный фон.

Рисунок 5.1. Конструкция p-i-n фотодиода

Рисунок 5.1. Конструкция p-i-n фотодиода

В основе работы фотодиода лежит обратно смещенный p - n переход. При нулевом смещении (ЕСМ = 0) ток дрейфа, протекающий через переход, сбалансирован противоположными токами из-за диффузии основных носителей. При ЕСМ ¹ 0 диффузия прекращается. Фототок возникает при освещении i – слоя излучением определенной длины волны. При этом.образуются пары "электрон – дырка". На них воздействует поле, созданное источником ЕСМ и сосредоточенное в i – слое. Это поле заставляет дрейфовать электроны и дырки. Создается фототок дрейфа

(5.1)

где е – заряд электрона (1,6 ´ 10 -19 Кл), N – число электронов, прошедших из валентной зоны в зону проводимости. Однако, не все фотоны вызывают образование пар "электрон – дырка". По этой причине вводится понятие квантовой эффективности:

(5.2)

- соотношение числа электронов и фотонов в фотодетекторе.

Величина фототока определяется

(5.3)

Учитывая, что число фотонов зависит от мощности излучения

(5.4)

величина фототока может быть представлена

(5.5)

где h – постоянная Планка, с – скорость света, l - длина волны излучения.

Чувствительность фотодиода оценивается

(5.6)

Для фотодиодов характерна спектральная чувствительность за пределами длины волны

(5.7)

На рисунке 5.2 приведены характеристики спектральной чувствительности фотодиодов на основе кремния Si и германия Ge.

Завалы спектральной характеристики обусловлены длинноволновой границей чувствительности и шунтирующим действием емкости запертого p - n перехода на высоких частотах, когда из-за высокой энергии фотоны не успевают взаимодействовать атомом материала.

Полоса детектируемых частот фотодетектора оценивается на уровне 0,707 от максимальной чувствительности.

Эквивалентная электрическая схема фотодиода позволяет оценивать частотные свойства фотодетектора для электрических сигналов (рисунок 5.3).

Рисунок 5.2. Спектральная чувствительность фотодиодов

Рисунок 5.2. Спектральная чувствительность фотодиодов

Рисунок 5.3. Эквивалентная электрическая схема фотодиода

Рисунок 5.3. Эквивалентная электрическая схема фотодиода

На вольт-амперной характеристике фотодиода можно увидеть предельное значение ЕСМ (т.е. Епроб) и величину темнового тока, протекающего через прибор при отсутствии освещения (рисунок 5.4).

Темновой ток чаще всего обусловлен поверхностным током утечки. Он сильно зависит от температуры.

Быстродействие фотодиода зависит от времени нарастания фототока при воздействии на фотодиод импульса оптической мощности (рисунок 5.5).

Рисунок 5.4. Вольт-амперная характеристика фотодиода

Рисунок 5.4. Вольт-амперная характеристика фотодиода

Рисунок 5.5. Характеристика быстродействия

Рисунок 5.5. Характеристика быстродействия

Величина t б определяется временем дрейфа носителей через i-область. Поэтому для увеличения быстродействия желательно уменьшить толщину i – слоя для электрического тока и сохранять толщину для светового потока. Это реализовано в конструкции фотодиода в форме "мезы" – горы [13].

Электрическая схема включения фотодиода приведена на рисунке 5.6.

Рисунок 5.6. Схема включения p-i-n фотодиода

Рисунок 5.6. Схема включения p-i-n фотодиода

В схеме включения разделительная емкость Ср позволяет устранить высокое напряжение смещения Есм (до 30 В) со входа малошумящего усилителя.

Динамический диапазон входных оптических мощностей для схемы фотодиода с усилителем может достигать 60 дБ.

5.3. Лавинный фотодиод. Конструкция, принцип действия, основные характеристики. Преимущества ЛФД

В лавинном фотодиоде достигается усиление первичного фототока за счет управляемого лавинного умножения числа носителей заряда. Этому способствует конструкция ЛФД. Лавинное умножение возникает в слое умножения (рисунок 5.7).

Лавинное умножение достигается за счет увеличения напряжения Есм до величины, близкой к пробойному. При этом на p - n переходе устанавливается очень сильное электрическое поле (Е > 10 5 В/см). Эта напряженность достигается в узкой области. Высокое быстродействие прибора будет достигнуто, если основная часть фотонов поглощается в слое, где существует сильное электрическое поле. Фотоны пролетают слой умножения и не успевают взаимодействовать с кристаллами. Носители зарядов образуются в слое поглощения и дрейфуют к соответствующим потенциалам. Двигаясь в сильном поле, носители приобретают большую кинетическую энергию и, отдавая часть ее другим носителям, освобождают новые носители (электроны и дырки).

Рисунок 5.7. Конструкция ЛФД

Рисунок 5.7. Конструкция ЛФД

Процесс увеличения числа носителей зарядов развивается лавинообразно и характеризуется коэффициентом

(5.8)

где D - показатель, определяемый материалом фотодиода (для Si
D = 1,5...9), Епроб – напряжение пробоя ЛФД.

Реальная величина усиления для кремниевых ЛФД - 50...100, для германиевых ЛФД - 2...15, для арсенидгалиевых – 10...35.

Величина фототока возрастает на коэффициент G.

(5.9)

Аналогично происходит увеличение чувствительности.

Спектральная чувствительность ЛФД сохраняет свои свойства, аналогичные p-i-n фотодиоду. Рабочей областью ЛФД на вольт-амперной характеристике будет зона, близкая к электрическому пробою.

При этом темновой ток также будет испытывать умножение. Величина темнового тока будет складываться из умножаемой и неумножаемой составляющих

(5.10).

Одной из характеристик ЛФД, определяющих динамический диапазон оптических сигналов, является линейность детектирования

(5.11)

Реальная величина динамического диапазона ЛФД может быть около 20 дБ.

Особенностью схемы включения ЛФД является регулируемый через цепь обратной связи источник напряжения смещения (рисунок 5.8).

Рисунок 5.8. Схема включения ЛФД

Рисунок 5.8. Схема включения ЛФД

Главное достоинство ЛФД заключается в высоком коэффициенте усиления и быстродействии, что позволяет использовать приборы с арсенидгалиевой основой на скоростях передачи данных до 10 Гбит/с и выше.

Недостатками ЛФД принято считать высокое напряжение смещения (до 400 В) и сложность схемы управления регулируемым источником Есм.

5.4. Фотодиоды конструкции TAP

Фотодиоды конструкции TAP разработаны в середине 90-х годов 20 века для преодоления проблемы частотного ограничения детектируемых сигналов. Проблема связана с паразитными ёмкостями и резисторами фотодиодов P-i-N и APD (рисунок 5.3). Разработки этих приборов особенно актуальны для систем передачи на скорости 160 Гбит/с (например, STM 1024). Фотодиоды TAP обеспечивают эффективное детектирование оптических сигналов в полосе частот до 200ГГц, что в сравнении с приборами P-i-N и APD даёт преимущество по полосе частот в 4-5 раз. При этом сохраняется температурная стабильность и интегрируемость приборов. На рисунках 5.9 и 5.10 представлены схемы прохождения оптических волн в двух типах приборов: TPWD (Travelling-wave Photodetector); P-TPWD (Periodic TPWD). В этих структурах сосредоточены зоны оптического усиления и оптического поглощения (детектирования), обозначенные на рисунках 5.11 и 5.12 соответственно Gain и Absorpcion.

Рисунок 5.9. Фотодиод с распределенной структурой TWPD

Рисунок 5.9. Фотодиод с распределенной структурой TWPD

Рисунок 5.10. Фотодиод c периодической распределённой структурой P-TWPD

Рисунок 5.10. Фотодиод c периодической распределённой структурой P-TWPD

Рисунок 5.11. Конструкция фотодетектора TWPD

Рисунок 5.11. Конструкция фотодетектора TWPD

Рисунок 5.12. Конструкция фотодетектора P-TPWD

Рисунок 5.12. Конструкция фотодетектора P-TPWD

Оптическое излучение вводится в область Waveguide, представляющую собой плоский оптический волновод. Схематичное распределение областей усиления и поглощения приведено на рисунке 5.13.

Рисунок 5.13. Расположение зон оптического усиления и поглощения в распределённых фотодетекторах бегущей волны TAP (TPWD и P-TPWD)

Рисунок 5.13. Расположение зон оптического усиления и поглощения в распределённых фотодетекторах бегущей волны TAP (TPWD и P-TPWD)

Как видно из рисунка входная оптическая мощность увеличивается усилителем до величины насыщения. Это может происходить однократно и многократно и тем можно добиваться требуемой величины фототока и быстродействия.

5.5. Шумы фотодиодов. Эквивалентная шумовая схема фотодиода

Шумы фотодиодов подразделяются на шумы фототока и шумы темнового тока.

Шумы темнового тока обусловлены шумом движения свободных носителей, шумом тепловой генерации пар носителей зарядов, шумом рекомбинации пар, шумом движения пар, шумом исчезновения свободных носителей, температурными изменениями.

Шум фототока (дробовый шум) обусловлен квантовыми процессами случайного возникновения пар носителей зарядов, шумом фоновой засветки, шумом отражения и поглощения в окне, шумом генерации и рекомбинации пар и т. д.

Шум фототока оценивается дисперсией среднего значения

(5.12),


где F(G) – шум-фактор ЛФД, D f – полоса частот сигнала и полоса пропускания ЛФД.

Фоновый шум, возникающий при случайной засветке фотодиода, оценивается аналогично (4.12):

(5.13),

где – ток фоновой засветки.

Тепловой шум вызывается случайным тепловым движением электронов в нагрузке фотодетектора

(5.14)

где K – постоянная Больцмана, Т – температура в градусах по Кельвину, D f – полоса частот сигнала.

Шум темнового тока обусловлен дисперсией темнового тока

(5.15).

Результирующее действие шумов определяется при объединении всех источников шумовых токов в виде эквивалентной схемы (рисунок 5.9).

(5.16)

При завершении раздела необходимо отметить, что к шумам приемника должны в расчетах добавляться шумы оптического передатчика.

Рисунок 5.14. Шумовая схема фотодиода

Рисунок 5.14. Шумовая схема фотодиода

Контрольные вопросы

  1. Какой прибор называется фотодетектором?
  2. Какие требования предъявляются к фотоприемникам систем связи?
  3. Что такое фотодиод?
  4. Как устроен p-i-n фотодиод?
  5. Какое назначение имеет просветляющий слой фотодиода?
  6. Какие характеристики имеет фотодиод?
  7. Какие преимущества имеет ЛФД перед p-i-n?
  8. Каким образом может быть повышено быстродействие фотодиода?
  9. Чем определяется коэффициент умножения ЛФД?
  10. Что представляет собой характеристика линейности детектирования ЛФД?
  11. Почему ЛФД нуждается в регулируемом источнике Есм?
  12. Какие шумы могут возникать в ЛФД?
  13. Какие элементы составляют шумовую схему фотодиода?
  14. Какие преимущества имеют фотодетекторы конструкции TAP?
  15. Что особенного в конструкции приборов TAP?

Волоконно-оптические системы передачи


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.