7.9.3. Измерения на ВОЛИ во время аварий

Во время строительства и эксплуатации ВОЛС кабели могут повреждаться по следующим основным причинам:

  • механические повреждения при земляных работах;
  • дефекты производства, строительства и эксплуатации;
  • воздействие грызунов;
  • воздействие атмосферного электричества (для ОК с металлическими элементами);
  • воздействие смещений грунта (обвалы, пучения, вибрация и т. д.);
  • воздействие при стихийных бедствиях (наводнения и пр.);
  • воздействие коррозии;
  • умышленные повреждения и т. д.

К особенностям оптических линий связи следует отнести сильное влияние на повреждаемость таких факторов, как усталостное разрушение, коррозия ОВ.

Характерные повреждения ОК — нарушение целостности ОВ, шланговых покрытий кабеля, повреждения изоляции цепей ДП.

Измерение расстояния до места повреждения ОВ. Специфичными для ВОЛС являются повреждения ОВ. Повреждением волокна считается любая неоднородность, приводящая к ухудшению свойств кабеля, в частности увеличению затухания. Наиболее широко для измерения расстояния до места повреждения ОВ используются оптические рефлектометры, реализующие метод обратного рассеяния.

Недостаток данного метода — низкий уровень потока обратного рассеяния, что ограничивает его возможности при определении мест повреждений на линиях большой протяженности. С этой точки зрения предпочтительнее использовать импульсный локационный метод, который также основан на посылке в испытуемое ОВ зондирующих оптических импульсов. Однако в отличие от метода обратного рассеяния импульсный метод предусматривает регистрацию только отраженных импульсов, что позволяет при использовании специальных схем выделения и регистрации отраженных импульсов повышать чувствительность и разрешающую способность средств измерений.

Измеряя задержку отраженного сигнала относительно зондирующего, определяют расстояние до места неоднородности:

, (7.18)

где tЗ — время задержки отраженного импульса относительно зондирующего; tУ — расширение отраженного импульса за счет дисперсии; с — скорость света; п1 — показатель преломления сердцевины ОВ.

К достоинствам данного метода следует отнести то, что он реализуется достаточно простыми средствами измерений.

Точность определения места повреждения рассмотренными выше методами зависит от величины неоднородности, создаваемой повреждением, которая в свою очередь зависит от характера излома волокна, угла поверхности излома и т. п. Мощность отраженного сигнала зависит от угла скола волокон. В случае воздействия на волокно только растягивающей силы возникает плоская поверхность излома. Если же волокно разрушается от удара, то поверхность не является плоской. Это надо учитывать при проведении измерений.

Помимо методов, рассмотренных выше, для определения поврежденных участков ВОЛС используются методы, основанные на корреляции ошибок по битам, а также хорошо известные методы контроля, основанные на передаче контрольных частот, когда дискретный сигнал поступает на каждый усилитель в полосе, не исполыуемой для передачи информации [2].

Определение места повреждения ОВ. Анализ способов поиска мест повреждения ОВ на трассе прокладки ОК показывает, что их можно разделить на три группы [9]. К первой следует отнести способы, основанные на измерении расстояния до места повреждения и последующем отсчете этого расстояния вдоль кабеля на трассе прокладки (рис 7.16).

Рис.7.16. Определение места повреждения ОВ кабеля путем измерения и последующего отсчета вдоль трассы расстояния до места повреждения

Рис.7.16. Определение места повреждения ОВ кабеля путем измерения и последующего отсчета вдоль трассы расстояния до места повреждения:
1-оптический рефлектометр; 2-оптическое волокно ОК

Способ первой группы по определению повреждения ОВ реализуется следующим образом. Измерения проводятся с помощью рефлектометра. Это обычно проходит в две стадии: сначала проводят приблизительную локализацию места повреждения, и затем более точно указывается место повреждения.

При приблизительной локализации рефлектометр настраивается на показ всей длины кабеля. Длительность импульса обычно составляет 4 нс. Если волокно разорвано, то кривая будет показывать соответствующее отражение в волокне, и если наблюдается большое возрастание затухания в точке повреждения волокна, то на графике кривой будет острый пик. Такие точки должны быть затем расширены для получения показаний прибора с большим разрешением. Таким образом находится приблизительное место повреждения кабеля. Если волокно разорвано, то место разрыва находится между двумя точками соединения.

Для более точного определения места повреждения кабеля в точке С (рис. 7. ]7) используется настолько короткий импульс насколько это возможно и график на дисплее должен быть максимально расширен вокруг ожидаемого места повреждения кабеля. После усреднения определяется место повреждения кабеля. Зная точки повреждения кабеля, полученные при измерении, можно выбрать относительную точку повреждения ОВ.

Расстояние до известной точки определяется с помощью результатов измерений и рефлектограммы, с привязками по трассе, полученными при сдаче ВОЛС в эксплуатацию. Индекс преломления прибора должен быть отрегулирован таким образом, чтобы расстояние, показываемое прибором, совпадало с истиной длиной кабеля. Точка повреждения измеряется с помощью отрегулированного значения показателя преломления.

Измерение проводится со стороны А и со стороны В. Определив расстояние до места повреждения со стороны A(lА-С1) и расстояние до места повреждения со стороны В(lВ-С2) можно определить относительную точку повреждения ОВ. Для этого необходимо суммировать длину участка А-С1 с расстоянием от точки С1 до относительной точки повреждения, которое определяется выражением вида:

. (7.19)

Рис.7.17. Определение места повреждения кабеля способом первой групы

Рис.7.17. Определение места повреждения кабеля способом первой групы

Рис.7.18. Определение места повреждения ОВ кабеля при внешнем локальном воздействии на волокно

Рис.7.18. Определение места повреждения ОВ кабеля при внешнем локальном воздействии на волокно:
1-оптический рефлектометр; 2-оптическое волокно ОК; 3-устройство внешнего воздействия

В основе способов второй группы лежит измерение характеристики обратного рассеяния поврежденного ОВ при внешнем локальном воздействии на ОК, которое перемещают вдоль трассы прокладки кабеля, изменяя затухание волокна в точке воздействия (рис. 7.18).

К третьей группе можно отнести способы определения места повреждения ОВ комбинированных ОК с металлическими элементами, основанные на сопоставлении характеристики обратного рассеяния поврежденного волокна и рефлектограммы токопроводящей цепи ОК при внешнем локальном электромагнитном воздействии на токопроводящую цепь, которое перемещают вдоль кабеля (рис. 7.19).

Рис. 7.19. Определение места повреждения ОВ кабеля с металлическими элементами

Рис. 7.19. Определение места повреждения ОВ кабеля с металлическими элементами:

а — с внешним каналом для синхронизации; б — с использованием для синхронизации токопроводящей цепи кабеля связи; в — на базе универсального прибора (УП), совмещающего функции ОР и измерителя неоднородностейтокопроводящих цепей:

1 — источник электромагнитного излучения; 2 — оптическое волокно ОК; 3 — оптический рефлектометр; 4 — рефлектометр для металлических цепей; 5 — универсальный рефлектометр

Погрешность способов первой группы обусловлена главным образом погрешностью отсчета расстояния вдоль трассы прокладки кабеля. Эта погрешность достаточно велика из-за случайных изменений глубины и направления прокладки кабеля вдоль трассы линии связи, неточности определения трассы прокладки кабеля, погрешностей средств измерений, применяемых для отсчета расстояния вдоль кабеля, и наконец, из-за значительных величин длин регенерационных участков ВОЛС (10...100 км и более) и строительных длин ОК (2...4 км). В случае, когда на ОК допустим монтаж относительно короткой вставки, может потребоваться уточнение места повреждения ОВ с поверхности земли на трассе прокладки кабеля. Это можно выполнить способами второй и третьей групп.

Способы второй группы реализуются следующим образом. Источник внешнего направленного воздействия на ОК, создающий в точке воздействия локальную неоднородность (увеличение затухания) ОВ, перемещают вдоль трассы прокладки кабеля. Изменение характеристики обратного рассеяния волокна наблюдают с помощью оптического рефлектометра, подключенного к поврежденному волокну. Место повреждения определяют как место расположения источника направленного воздействия, для которого неоднородность, обусловленная внешним воздействием, и неоднородность, обусловленная повреждением ОВ, совпадут на регистрируемой характеристике обратного рассеяния.

При поиске места повреждения в комбинированных ОК направленное электромагнитное воздействие перемещают вдоль трассы, регистрируя рефлектограмму токопроводящей цепи кабеля, как правило, цепи «металлический элемент — земля». Сопоставляя характеристику обратного рассеяния ОВ и рефлектограмму токопроводящей цепи, находят на рефлектограмме точку повреждения ОВ. Место повреждения определяют как место размещения внешнего электромагнитного воздействия, для которого в этой точке рефлектограммы будет зарегистрирован наведенный источником внешнего воздействия импульс.

Основные проблемы реализации способов этой группы связаны с необходимостью синхронизации рефлектометра и источника внешнего воздействия, а также с обеспечением достаточных уровней наводимых сигналов при малых габаритных размерах устройства внешнего воздействия.

Как правило, делать короткие вставки (менее 0,5 ... 1 км) на ВОЛС не рекомендуется. Поэтому точность определения места повреждения волокон, обеспечиваемая способами первой группы, обычно является достаточной и необходимость в уточнении мест повреждения с поверхности земли на трассе возникает редко [2].

Определение мест повреждений жил дистанционного питания ОК. К повреждениям токопроводящих цепей ОК относятся обрыв металлических элементов (если требуется сохранять их электрическую непрерывность) и повреждение изоляции между металлическими элементами, металлическими элементами и землей. Методика нахождения мест повреждений такого характера и рекомендуемые в этом случае приборы те же, что и для электрических кабелей связи. Так, для определения мест обрыва металлических элементов может быть рекомендован импульсный метод, позволяющий измерять расстояние до места обрыва, и индукционный метод для поиска места повреждения на трассе. Для реализации этих методов требуются измеритель неоднородностей и кабелеискатель в комплекте с генератором испытательных сигналов.

Методов определения повреждения изоляции металлических элементов (понижение сопротивления изоляции и электрической прочности изоляции) достаточно много, и они хорошо известны. Выбор того или иного способа зависит от характера и условий повреждения. Основными средствами измерений, используемыми в данном случае, являются мосты постоянного тока, высоковольтные мосты, искатели мест понижения изоляции, источники высокого напряжения и др.

Определение мест повреждения защитного шланга ОК. Повреждение наружных изолирующих покровов ОК ведет к проникновению влаги в кабель и соответственно к увеличению интенсивности коррозионных процессов ОВ и преждевременному их старению. Методика поиска мест повреждения шланга (полимерной оболочки) и приборы те же, что и для электрических кабелей связи. Расстояние до места повреждения определяется с помощью моста постоянного тока. Поиск места понижения сопротивления изоляции наружных покровов ОК может производиться методом градиента потенциалов приборами — искателями мест понижения изоляции (ИМПИ). При высоких переходных сопротивлениях (до 1...5 МОм) предварительно можно осуществить дожег изоляции с помощью высоковольтного источника напряжения. Способы контроля за исправностью защитного шланга кабелей, а так же методы определения района и мест его повреждения приведены в [10].

Способы определения трассы прокладки ОК. Точность нахождения места повреждения ОК во многом зависит от точности определения трассы прокладки ОК. Для ОК с металлическими элементами способы определения трассы те же, что и для обычных электрических кабелей связи (с помощью кабелеискателей) [10]. Для ОК без металлических элементов эти способы не подходят. На сегодняшний день для таких кабелей рекомендуются способы, основанные на применении:

  • системы электронных маркеров, при которой специальные малогабаритные пассивные маркеры периодически располагаются вдоль трассы в земле в непосредственной близости от кабеля и обнаруживаются с помощью специальных трассопоисковых приборов;
  • металлических маркеров-проводов, которые периодически располагаются в оболочке кабеля и выводятся в специальную выводную колонку (КИП);
  • ярко окрашенной электропроводящей предупредительной ленты, прокладываемой в грунт непосредственно над кабелем на расстоянии 152...305 мм;
  • специального маркировочного кабеля, например, состоящего из двух пар медных проводников диаметром 0,9 мм; кабель прокладывается кабелеукладчиком совместно с ОК, через определенные расстояния выводится на поверхность и оконцовывается в специальной муфте, которая крепится к опоре или стойке.

Как правило, на наружной поверхности оболочек маркировочных лент, кабелей имеется маркировка длины (например, с интервалом 0,3 м), а иногда и предупредительные надписи. Кроме того, на защитном шланге ОК имеется маркировка длины с интервалом в 1м.

Наиболее известная электронная система маркировки и поиска подъемных сооружений—система Scotch-mark фирмы 3M (США). Система предусматривает четыре типа маркеров. Специальный сигнал, посылаемый источником направленного излучения, отражается маркером и регистрируется приемником. Аналогичная система имеется и в России. Стоимость системы достаточно высока, причем при частом расположении маркеров она возрастает. При редком расположении маркеров система не позволяет определять трассу на участках между маркерами. Достоинство системы — простота поиска трассы. Кроме того, она не создает опасности повреждения ОК от внешних электромагнитных воздействий, стационарные сооружения-маркеры не могут быть разрушены с поверхности трассы. Эта система является наиболее перспективной.

Способ размещения маркировочных проводов в оболочке ОК хотя и удобен в эксплуатации и позволяет очень точно определять трассу, но не нашел широкого применения, поскольку очень дорог. Маркеры-провода являются потенциальными источниками повреждения ОК (например, грозовыми разрядами).

Способ прокладки электропроводящей предупредительной ленты над кабелем также достаточно дорог. Кроме того, как показал опыт эксплуатации подобных систем, рабочие, выполняющие земляные работы, нередко принимают маркерную ленту за кабель, что может привести к повреждению ОК.

Способ прокладки маркировочного кабеля совместно с ОК так же дорог и требует оборудования для крепления специальных муфт. Однако он обеспечивает возможность организации служебной связи и точность определения трассы на всей длине ОК достаточно высока.

Учитывая проблемы трассировки ОК, особое внимание следует уделять документации на трассу прокладки кабеля, точности привязок к местности, характеристике обратного рассеяния, рефлектограммам токопроводящих цепей.

Волоконно-оптические кабели и линии связи


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.