2.4.3. Волновые уравнения

Для математического анализа распространения электромагнитных волн в диэлектрических волноводах (оптических волокнах) методом волновой оптики необходимо воспользоваться уравнениями Максвелла (2.16) — (2.21). Из этих уравнений можно получить более удобное для практики уравнение, взяв операцию ротора от уравнения (2.17) с учетом (2.19),

(2.33)

Подставив (2.16) и (2.18) в (2.33), получим уравнение, содержащее только один вектор Е:

(2.34)

Это уравнение справедливо и в том случае, когда ε изменяется в пространстве, т.е. для неоднородной среды. Первый член выражения (2.34), исходя из векторной алгебры, можно представить в виде:

, (2.35)

где — оператор Лапласа.

Заменив в этом уравнении вектор Е на D/ε, можно получить выражение первого члена правой части в виде:

. (2.36)

Поскольку то

(2.37)

Тогда с учетом (2.35), (2.36) и (2.37) уравнение (2.34) принимает вид:

(2.38)

Аналогично можно получить волновое уравнение для вектора Н, взяв операцию ротора от уравнения (2.16),

(2.39)

Рассмотрим решение уравнения (2.38) в разных средах.

В частном случае, когда среда однородна по координатам пространства ε=const и не зависит от частоты, уравнение (2.38) принимает вид:

(2.40)

Такой же вид в данной среде принимает и уравнение (2.39). Уравнение (2.40) справедливо для любой компоненты поля в декартовой системе координат. В цилиндрической системе координат оно справедливо только для составляющей Ez. Величина имеет физический смысл скорости в среде с диэлектрической и магнитной проницаемостями ε/ε0 и μ/μ0, где ε0, μ0 — диэлектрическая и магнитная проницаемости вакуума. Как отмечалось ранее, в оптических средах везде считается, что μ/μ0=1.

Решение уравнения (2.40) может удовлетворяться любой функцией [8]:

, (2.41)

если существует вторая производная от ψ. Это решение представляет плоскую волну. В выражении (2.41) компоненты r являются координатами точки наблюдения, n — единичный вектор, номальный к плоскости, а v не зависит от частоты. Действительно, при фиксированном значении времени t и заданном значении аргумента этой функции

(2.42)

функция ψ (u) имеет соответствующее фиксированное значение. Поэтому ψ (u) имеет одно и то же значение на этой бесконечной плоскости. Каждому приращению Δt соответствует приращение Δr, так что величина (2.42) остается неизменной, т.е.

. (2.43)

Вектор n является нормалью как к первоначальной, так и к смещенной плоскости. Из (2.42) следует, что плоскость движется в пространстве со скоростью v. Частным случаем являются такие решения уравнения (2.40), которые в каждой точке пространства изменяются во времени по косинусоиде

. (2.44)

Вектор называется волновым вектором. Все частотные составляющие сигнала распространяются с одной и той же фазовой скоростью. Следовательно, сигнал не претерпевает дисперсии.

В однородной дисперсионной среде при ε=ε(ω) и v=v(ω) решение (2.41) является приближенным, если дисперсия слабо выражена. В компонентах ВОСП это условие обычно выполняется.

Рассмотрим два случая: возбуждение сигнала ψ(t) некоторой светящейся плоскостью и некоторой светящейся поверхностью неплоской структуры.

Пример первый. Если некоторый сигнал ψ(t) возбуждается некоторой светящейся плоскостью, на которой этот сигнал можно представить в виде суперпозиции синусоидальных колебаний с помощью преобразования Фурье, то каждое гармоническое колебание (2.44) распространяется через дисперсионную среду как плоская волна. Такого типа волну ψ(t) можно представить в виде комплексного интеграла Фурье, располагая систему координат для удобства таким образом, чтобы она распространялась вдоль оси z. Тогда

(2.45)

Амплитудная функция φ(ω) определяется через известную форму сигнала при z=0:

(2.46)

Таким образом, сигнал в пространстве дисперсионной среды представляется совокупностью волн, каждая из которых находится в своей плоскости и движется со своей скоростью.

Пространственная длительность сигнала (Δz), представленная на рис. 2.18, определяется расстоянием между плоскостью 1 с гармоническим колебанием сигнала частотой и плоскостью N с гармоническим колебанием ω2.

Рис. 2.18. Пространственная длительность сигнала, ?z в однородной дисперсионной среде

Напомним, что эти представления пригодны для случая, когда v слабо зависит от частоты или функция ψ(z,t) описывается узким спектром частот по сравнению с оптической несущей. Последнее условие в ВОСП также выполняется.

Фазовая скорость не имеет смысла для функции (2.45), однако эта функция правильно описывает распространение плоской волны общего вида в дисперсионной среде.

Изложенные выше представления полей, распространяющихся в дисперсионной среде, можно использовать и в случае возбуждения сигнала ψ(t) некоторой светящейся поверхностью неплоской структуры.

Пример второй. Криволинейную поверхность представим в виде совокупности плоских волн. На выходе реальных источников излучения, которыми являются лазеры, колебания сферические. Поэтому на малом расстоянии от лазера излучение представляется совокупностью плоских волн.

Используя суперпозицию плоских синусоидальных волн со всевозможными частотами, бегущих во всевозможных направлениях, можно составить общее выражение для волны, распространяющейся в дисперсионной среде:

(247)

Здесь kz или любая другая составляющая волнового вектора должна удовлетворять условию:

. (2.48)

Составляющая kz, может быть мнимой, когда подкоренное выражение отрицательно. В этом случае вместо плоской волны имеем дело с нераспространяющейся (локальной) волной. Такие волны также являются решениями волнового уравнения (2.40).

Интегральное представление (2.47) более общей волны состоит из плоских волн всевозможных направлений распространения и всевозможных частот, а также и из нераспространяющихся (локальных) волн. При гармоническом (синусоидальном) сигнале интегрирование по частоте можно исключить.

Волоконно-оптические кабели и линии связи


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.