4.4.1. Обобщенное представление сигналов с угловой модуляцией

В предыдущем разделе была рассмотрена процедура модуляции, когда информационным параметром, изменяемым в соответствии с законом управляющего (модулирующего) сигнала являлась амплитуда несущего колебания. Однако помимо амплитуды несущее колебание характеризуется также частотой и начальной фазой

, (4.20)

где – полная фаза несущего колебания, которая определяет текущее значение фазового угла.

Изменение либо , либо в соответствии с управляющим сигналом соответствует угловой модуляции. Таким образом, понятие угловой модуляции включает в себя как частотную (ЧМ), так и фазовую (ФМ) модуляцию.

Рассмотрим обобщенные аналитические соотношения для сигналов с угловой модуляцией. При частотной модуляции в соответствии с управляющим сигналом изменяется мгновенная частота несущего колебания в пределах от нижней до граничных частот

. (4.21)

Наибольшее значение частотного отклонения от называется девиацией частоты

.

Если граничные частоты расположены симметрично относительно , то девиация частоты

. (4.22)

Именно такой случай частотной модуляции будет рассматриваться в дальнейшем.

Закон изменения полной фазы определяется как интеграл от мгновенной частоты. Тогда, с учетом (4.21) и (4.22), можно записать

. (4.23)

Подставляя (4.23) в (4.20), получим обобщенное аналитическое выражение сигнала с частотной модуляцией

. (4.24)

Слагаемое представляет собой составляющую полной фазы, обусловленную наличием частотной модуляции. Нетрудно убедится в том, что полная фаза сигнала с частотной модуляцией изменяется по закону интеграла от .

При фазовой модуляции, в соответствии с модулирующем сигналом , изменяется начальная фаза несущего колебания в пределах от нижнего до верхнего граничных значений фазы

. (4.25)

Наибольшее отклонение фазового сдвига от называется девиацией фазы . Если и расположены симметрично относительно , то . В этом случае полная фаза сигнала с фазовой модуляцией

. (4.26)

Тогда, подставляя (4.26) в (4.20), получим обобщенное аналитическое выражение сигнала с фазовой модуляцией

. (4.27)

Рассмотрим, как изменяется мгновенная частота сигнала при фазовой модуляции. Известно, что мгновенная частота и текущая пол-

ная фаза связаны соотношением

.

Подставляя в это выражение формулу (4.26) и проведя операцию дифференцирования, получим

, (4.28)

где – составляющая частоты, обусловленная наличием фазовой модуляции несущего колебания (4.20).

Таким образом, изменение начальной фазы несущего колебания приводит к изменению мгновенных значений частоты по закону производной от по времени.

Практическая реализация устройств формирования сигналов угловой модуляции может осуществляться одним из двух методов: прямым или косвенным. При прямом методе в соответствии с законом изменения управляющего сигнала изменяются параметры колебательного контура генератора несущего колебания. Выходной сигнал при этом оказывается промодулированным по частоте. Для получения сигнала фазовой модуляции на входе частотного модулятора включается дифференцирующая цепь.

Сигналы фазовой модуляции при прямом методе формируются путём изменения параметров колебательного контура усилителя, подключённого к выходу генератора несущего колебания. Для преобразования сигналов фазовой модуляции в сигнал частотной модуляции управляющее колебание подаётся на вход фазового модулятора через интегрирующую цепь.

Косвенные методы не предполагают непосредственного воздействия управляющего сигнала на параметры колебательного контура. Один из косвенных методов базируется на преобразовании амплитудно-модулированных сигналов в сигналы фазовой модуляции, а те, в свою очередь, - в сигналы частотной модуляции. Более подробно, вопросы формирования сигналов частотной и фазовой модуляции будут рассмотрены ниже.

Радиотехнические цепи и сигналы


*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.