5.4.4. Операторный метод

Операторный метод является обобщением спектрального метода. В основе метода лежит преобразование Лапласа. Рассмотрим некоторый сигнал , определённый на интервале времени (0, ). Умножим этот сигнал на и полученный новый сигнал подвергнем преобразованию Фурье

.

Обозначая через , получим

. (5.28)

Выражение (5.28) называется односторонним преобразованием Лапласа функции . При этом, называют оригиналом, а изображением.

Нетрудно убедиться, что при выражение (5.28) преобразуется к виду

,

что соответствует преобразованию Фурье. Таким образом если преобразование Фурье представляет собой спектральное разложение сигнала по гармоническим составляющим , то преобразование Лапласа – разложение сигнала по экспоненциально – косинусным составляющим . Действительно, представим

.

Здесь использована формула Эйлера

.

С другой стороны

,

где .

Тогда окончательно

представляет собой экспоненциально – косинусную функцию.

Переход от изображения к оригиналу осуществляется при помощи обратного преобразования Лапласа

. (5.29)

Для значительной части функций широко используемых при описании оригиналов были рассчитаны изображения по Лапласу. Некоторая часть оригиналов и изображений приведена в таблице 5.1.

Поскольку преобразование Лапласа является обобщением преобразования Фурье, то оно обладает теми же свойствами, что и преобразование Фурье. Остановимся на некоторых из них, которые будем использовать в дальнейшем. Пару преобразований (прямое и обратное) будем обозначать следующим образом

.

1. Линейность преобразований Лапласа

(5.30)

2. Свойство временного сдвига

(5.31)

3. Операция дифференцирования

; (5.32)

4. Операция интегрирования

. (5.33)

Применим к обеим частям уравнения (5.16) прямое преобразования Лапласа. Тогда с учётом (5.32), получим

(5.34)

откуда следует

. (5.35)

Это отношение называется передаточной функцией цепи или её операторным коэффициентом. Таким образом, передаточная функция является оператором преобразования линейной цепью в базисе экспоненциально – косинусных сигналов.

Сравним выражение комплексного коэффициента передачи (5.18) с выражением (5.35). Из этого сравнения следует, что комплексный коэффициент передачи является частным случаем при , т.е.

(5.36)

Таким образом, если известна передаточная функция цепи, то операторный метод поиска отклика цепи состоит в следующем:

- находится изображение по Лапласу входного сигнала

; (5.37)

- находится изображение выходного сигнала как произведение

; (5.38)

- определяется оригинал выходного сигнала

. (5.39)

Установим связь между временными характеристиками и передаточной функцией. Произведя в (5.12) замену на , получим

.

Таким образом, передаточная функция и импульсная характеристика связаны между собой преобразованием Лапласа

.

Что касается переходной характеристики, то применяя к (5.8) преобразование Лапласа и учитывая (5.33), получим

.

В заключение отметим, что операторный метод позволяет сводить линейные дифференциальные уравнения вида (5.16) к алгебраическим уравнениям (5.34), что позволяет в ряде случаев упростить анализ цепей. Помимо этого, учитывая широкое распространение таблиц преобразований Лапласа для большого числа функций, можно исключить громоздкие вычисления, непосредственно обращаясь к этим таблицам.

Рассмотрим применение операторного метода на примере анализа определения отклика RC-цепи на входной сигнал вида . Эта задача была решена классическими временными методами. Спектральным методом был найден комплексным коэффициент передачи. Заменив в выражении для цепи на , получим передаточную функцию цепи

.

Следуя операторному методу найдём изображение по Лапласу входного сигнала, воспользовавшись при этом таблицей 5.1

.

Далее, в соответствии с (5.38), определим изображение выходного сигнала

.

И наконец, по таблице 5.1 (позиция 5) находим оригинал

,

что совпадает с полученными ранее результатами.

Радиотехнические цепи и сигналы


*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.