5.5.2. Пассивные частотно-избирательные цепи

К пассивным частотно-избирательным цепям относятся колебательные контуры. Простейший колебательный контур содержит резистор R, индуктивность L и емкость C. Если в контуре элементы R, L и C соединены последовательно, то такой контур называется последовательным, а если соединены параллельно – параллельным колебательным контуром.

Рис.5.6

Один из вариантов последовательного колебательного контура изображен на рис. 5.6. Так же, как и предыдущие цепи, рассматриваемый контур можно представить как делитель напряжения. Тогда

комплексный коэффициент передачи контура

,

или с учетом того, что , и :

. (5.42)

Из этого выражения следует, что комплексный коэффициент передачи имеет максимум при

, (5.43)

т.е. последовательный колебательный контур из совокупности сигналов разных частот выделяет один, который имеет частоту . Это явление, как известно, называется резонансом, а частота резонансной частотой.

Резонансная частота определяется из условия (5.43):

или . (5.44)

Рассмотрим основные характеристики последовательного колебательного контура.

Характеристическим сопротивлением называется значение сопротивления одного из реактивных элементов (индуктивности или емкости) при резонансной частоте

. (5.45)

Добротностью контура называется отношение характеристического сопротивления к резистивному

. (5.46)

Поясним физический смысл добротности. Из (5.42) при имеем

.

Тогда с учетом (5.46) можно записать

. (5.47)

Таким образом, добротность показывает во сколько раз напряжение на индуктивности или емкости (выходной сигнал) больше, чем приложенное входное напряжение. Затуханием контура называется безразмерная величина, обратная добротности

.

Постоянная времени контура

, (5.48)

характеризует инерционность контура. Очевидно, чем больше (чем больше ), тем медленнее протекают переходные процессы в контуре.

Возвратимся к (5.42) и представим это выражение с учетом (5.44) в виде

.

Обозначая

,

после несложных преобразований получим

.

Рассмотрим поведение комплексного коэффициента передачи в окрестности резонансной частоты, т.е. при . Тогда величина :

, (5.49)

где – абсолютная расстройка, представляет собой так называемую удвоенную относительную расстройку. С учетом этого выражение для комплексного коэффициента передачи можно представить как функцию удвоенной относительной расстройки в следующем виде

. (5.50)

Амплитудно-частотная характеристика

, (5.51)

а фазо-частотная характеристика

. (5.52)

На рис. 5.7 изображены графики АЧХ и ФЧХ рассматриваемого колебательного контура в окрестности резонансной частоты.

Рис. 5.7

Полосой пропускания контура называется диапазон частот, в пределах которого . Очевидно, равенство в этом выражении соответствует граничным частотам и полосы пропускания. Эти частоты находятся в результате решения уравнения

. (5.53)

Решение этого уравнения дает

, ,

или с учетом (5.49)

, .

Тогда полоса пропускания контура определяется по формуле

. (5.54)

В заключение составим дифференциальное уравнение последовательного колебательного контура. Напряжение, приложенное к контуру:

, (5.55)

где – напряжение на резисторе, – напряжение на индуктивности, – напряжение на конденсаторе. Но напряжение на конденсаторе является выходным сигналом . С другой стороны напряжение на резисторе , а напряжение на индуктивности . Ток, протекающий через контур, можно выразить через напряжение на конденсаторе

.

Тогда напряжение на индуктивности

,

и на резисторе

.

Подстановка этих выражений в (5.55) дает соотношение

.

Разделим обе части этого уравнения на . Тогда уравнение принимает вид

, (5.56)

где – коэффициент затухания.

Применив к обеим частям уравнения (5.56) преобразование Лапласа, можно получить выражение для передаточной функции

. (5.57)

Нетрудно заметить, что замена в (5.57) на приводит к выражению (5.42).

Параллельный колебательный контур представляет собой параллельное соединение , и элементов (рис. 5.8). Входным сигналом такого контура является ток , а выходным – напряжение на элементах контура. Согласно закону Ома комплексное значение напряжения на элементах контура

.

В свою очередь комплексное сопротивление есть величина, обратная комплексной проводимости. При параллельном соединении , и комплексная проводимость равна

, (5.58)

или

. (5.59)

Проводя суммирование дробей, и вычисляя обратное значение суммы, получим

. (5.60)

Как и в последовательном контуре, резонанс в параллельном колебательном контуре, как это следует из (5.60), имеет место при условии .

Характеристическое сопротивление контура описывается выражением (5.45). Что касается добротности , то в отличие от (5.46) для параллельного контура она определяется выражением

. (5.61)

Отсюда постоянная времени контура

. (5.62)

Вводя параметр и проводя аналогичные рассуждения, как и в случае последовательного контура, после несложных преобразований получим выражение для в окрестности резонансной частоты:

. (5.63)

Очевидно, амплитудно-частотная характеристика

, (5.64)

носит такой же характер, как и для последовательного контура (5.51). Поэтому график АЧХ параллельного контура совпадает по форме с кривой рис. 5.7а. Фазо-частотная характеристика имеет вид

. (5.65)

На рис. 5.9 приведен график ФЧХ параллельного контура. Полоса пропускания и граничные частоты и определяются аналогично этим же параметрами последовательного контура. При составлении дифференциального уравнения следует учесть, что входной сигнал – ток

, (5.66)
где ; ; – токи, протекающие через соответствующие элементы, – напряжение на контуре, являющееся выходным сигналом .


Подстановка этих выражений в (5.65) дает

.

Дифференцирование левой и правой частей приводит к результату

, (5.67)

где – коэффициент затухания.

Передаточная функция параллельного контура описывается выражением

. (5.68)

Радиотехнические цепи и сигналы


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.