2.1. Тригонометрический ряд Фурье. Спектр периодического сигнала

Рассмотрение методов спектрального анализа радиотехнических сигналов мы начнем с детерминированных периодических сигналов. Как уже подчеркивалось выше детерминированные сигналы характеризуются тем, что в любой наперед заданный момент времени его значения можно точно определить. Периодическим детерминированным сигналом является сигнал известной формы периодически повторяющийся через интервал времени , называемый периодом повторения. Математически периодический сигнал описывается выражением

, (2.1)

К периодическим сигналам относятся гармоническое колебание, определенное на бесконечном интервале времени, последовательность импульсов с известной амплитудой, длительностью и периодом повторения и другие.

Спектральный анализ предусматривает выбор системы базисных функций. На практике наибольшее распространение получили тригонометрические функции. Это обусловлено тем, что при преобразовании сигналов такой формы, например, линейными радиотехническими цепями их форма сохраняется, а меняются только амплитуда и фазы колебаний. С другой стороны, формирование таких сигналов осуществляется достаточно простыми техническими средствами.

Сигналы, описываемые тригонометрическими функциями, называются гармоническими сигналами, а спектральный анализ в системе базисных тригонометрических функций – гармоническим анализом.

Итак, выберем в качестве базисных функций систему

, (2.2)

где .

Нетрудно убедиться, что функции, образующие систему (2.2) являются ортогональными на интервале времени и удовлетворяют условию периодичности (2.1). Тогда в соответствии с (1.36) можно записать

, (2.3)

где .

Нормы базисных функций в соответствии с (1.26) равны

; .

Тогда из (1.39) вытекает

, (2.4)

, . (2.5)

Выражение (2.3) называется тригонометрическим рядом Фурье и представляет собой разложение сигнала на составляющие в системе тригонометрических функций.

В радиотехнической практике часто оказывается удобнее иное представление ряда (2.3). Выделим из (2.3) k-тую составляющую

и представим ее в виде

, (2.6)

Рис. 2.1

С геометрической точки зрения составляющую можно рассматривать как вектор в системе координат (рис. 2.1). Длина вектора , а -угол, на который повернут вектор относительно оси . Нетрудно убедиться, что

, .

Тогда выражение (2.6) принимает вид

, (2.7)

где .

С учетом (2.7), ряд Фурье (2.3) можно переписать следующим образом

. (2.8)

Составляющая

(2.9)

называется k-той гармонической составляющей или просто k-той гармоникой.

В соответствии с определением спектра, данном в предыдущем разделе, совокупность и составляют амплитудный спектр, а совокупность фазовый спектр сигнала. Таким образом, амплитудный спектр периодического сигнала содержит постоянную составляющую и бесконечное число амплитуд соответствующих гармоник. То же самое относится и к фазовому спектру.

При спектральном анализе спектры удобно представлять в виде спектральных диаграмм.

На рис.2.2, а изображен периодический сигнал в координатах и . Проведем еще одну ось, перпендикулярную осям и и отложим на этой оси значения . Изобразим гармонические составляющие сигнала на этих частотах, а на оси частот отложим значения и в виде отрезков прямой. Если теперь развернуть всю систему координат вокруг оси на 90º в направлении стрелки, мы получим диаграмму амплитудного спектра сигнала (рис. 2.2, б). Таким же образом можно построить спектральную диаграмму фазового спектра, примерный вид которой показан на рис. 2.2, в.

Рис. 2.2

Радиотехнические цепи и сигналы


*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.