2.3. Формирование сигналов амплитудной модуляции

Как известно, амплитудно-модулированный сигнал описывается выражением:

, (2.12)

где – управляющий (модулирующий) сигнал;

– коэффициент амплитудной модуляции;

и – соответственно, амплитуда и частота несущего

колебания.

Представив (2.12) в виде:

, (2.13)

нетрудно убедится в том, что амплитудно-модулированное колебание является результатом добавления к сигналу несущего колебания произведения управляющего сигнала и сигнала несущей. Таким образом, при построении амплитудных модуляторов основной задачей является реализация перемножения двух сигналов: управляющего сигнала и сигнала несущего колебания.

2.6.jpg Эта задача решается с помощью нелинейного усилителя (Рис. 2.6), нагрузкой которого является колебательный контур, настроенный на частоту несущего колебания, и на вход которого поступает сигнал:

. (2.14)

Выбором напряжения смещения , обеспечим режим без отсечки тока (степенную аппроксимацию ВАХ транзистора):

. (2.15)

Подстановка (2.14) в (2.15) дает:

. (2.16)

Разделив обе части (2.16) на получим:

(2.17)

Последние два слагаемых в (2.17) представляют собой в соответствии с (2.13) амплитудно-модули-рованный сигнал с коэффициентом , который выделяется на нагрузке усилителя:

(2.18)

При однотональной амплитудной модуляции:

.

Подстановка этого выражения в (2.18) после элементарных преобразований дает:

,

где – коэффициент амплитудной модуляции.

Режим без отсечки тока (степенная аппроксимация ВАХ) позволяет обеспечить .

Для обеспечения больших значений используют режим с отсечкой тока при аппроксимации:

, при . (2.19)

Подстановка (2.14) в (2.19) после преобразований дает:

,

где – угол отсечки, изменяющийся

в соответствии с изменением .

Амплитуда первой гармоники тока:

, (2.20)

также будет изменяться в соответствии с изменением , а следовательно и .

Амплитуда напряжения на выходе усилителя:

.

Важнейшей характеристикой модулятора является его модуляционная характеристика, т.е. зависимость амплитуды первой гармоники коллекторного тока транзистора от амплитуды управляющего сигнала, т.е. . Эта характеристика должна быть линейной в диапазоне изменений от минимального до максимального значений. Так как амплитуда первой гармоники зависит от угла отсечки как функция Берга [выражение (2.20)], то зависимость будет линейной в пределах линейного участка . Анализ графика зависимости (см. рекомендованную литературу) показывает, что эта зависимость имеет линейный характер в пределах . При этом функция Берга изменяется от до . Зная эти значения можно определить максимальное значение :

,

или подставляя в это выражения формулу (2.20):

.

Радиотехнические цепи и сигналы


*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.