6.1. Круглый волновод

В круглом волноводе электромагнитное поле представляется в виде совокупности поперечно – электрических (Н – волны) и поперечно – магнитных (Е - волны) различных типов.

Так же и в теории прямоугольных волноводов, из уравнений Максвелла можно получить волновое уравнение для или составляющих. Рассмотрим Н – волны, для которых волновое уравнение имеет вид

, (6.18)

где - поперечное волновое число, - оператор Лапласа в цилиндрической системе координат, тогда (6.18) запишется:

(6.19)

Как и в предыдущем анализе рассматриваем гармонические колебания, волна распространяется вдоль оси Z, т. е. .

Решение волнового уравнения в цилиндрической системе координат представляется совокупностью функций Бесселя и гармонических функций.

(6.20)

Функции Бесселя второго рода при обращаются в бесконечность. Из физических условий ясно, что поле в центре волновода ( ) должно иметь конечное значение, т. е. . Тогда (В.20) будет иметь вид:

. (6.21)

Так как функция не должна изменяться при замене на , то может быть лишь целым числом, т. е. Для рассматриваемой системы должно выполняться граничное условие , при , это условие выполнимо при

при , или ,

Таким образом, делаем вывод, что граничное условие выполнимо при обращении производных соответствующих производных функций Бесселя в нуль, т. е. аргумент функции является корнем производной функции Бесселя первого рода порядка , обозначим этот корень . Учитывая соотношение , определяем критическую частоту в круглом волноводе

. (6.22)

Индекс m определяет порядок функции Бесселя, а nномер её корня. В структуре поля m определяет число полуволн вдоль диаметра волновода, а nвдоль его окружности, т. е. число вариаций по диаметру и по азимуту.

Аналогичный анализ можно провести и для Е – волн, в этом случае условие распространения поля определяется

при , ,

где - nый корень функции Бесселя m го порядка. Как видно из анализа, в круглом волноводе также распространяется бесчисленное множество (континуум) мод, условие распространения которых определяется обращением в нуль функций Бесселя (Е - волны) или их производных (Н - волны), а значения критических частот определяются значениями корней этих функций.

В круглом волноводе основной является волна , при радиусе волновода а она имеет наибольшую критическую длину волны . В этом смысле волна является аналогом волны в прямоугольном волноводе. В таблице 6.1 приведены структуры поля некоторых типов волн и их критические частоты.

Таблица В1

Характеристика

Тип волны

Поле в плоскости

поперечного

сечения

Компоненты

полей, отличные

от нуля

, , , ,

, ,

, ,

Особый интерес представляет в круглом волноводе волна . Затухание этой волны с ростом частоты, в отличие от других волн, уменьшается (рис. 6.5).

Это объясняется следующим образом. Все типы волн, кроме , имеют электрическое поле, линии которого замыкаются на стенках волновода, т.е. возникают токи проводимости на стенках, приводящие к тепловым потерям и увеличению затухания, с ростом частоты эти потери возрастают. Силовые линии электрического поля волны циркулируют по поперечным замкнутым окружностям (табл. 6.1) внутри волновода и не соприкасаются со стенками волновода. Этим линиям соответствуют токи смещения в диэлектрике , в металлических стенках токи отсутствуют. С увеличением частоты силовые линии электрического поля концентрируются в центре волновода.

Однако волна не является основной, кроме того, она является неустойчивой, так как линии поля не имеют жесткой связи со стенками волновода. Эта волна чувствительна к различным неоднородностям и деформациям в волноводе и легко трансформируется в другие высшие типы волн.

Для повышения устойчивости этой волны используются не сплошные волноводы, а спиральные, тогда кольцевые токи смещения поддерживаются спиральными токами в стенках волновода. Спиральные волноводы имеют большее затухание, чем сплошные, поэтому на практике в круглых волноводах используются вставки из спиральных волноводов.

Волноводы непосредственно для организаций линий связи не применяются, т. к. они имеют ряд недостатков. Они применяются в антенно – фидерных трактах в радиорелейной связи, в наземных станциях спутниковых систем связи.

Направляющие системы связи


*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.