7.5. Затухание в волоконных световодах

Одним из основных требований, предъявляемых к любой системе передачи, является большая длина участка регенерации, которая определяется потерями в среде передачи. Поэтому важнейшим параметром ВС является его затухание. Затухание ВС зависит от нескольких факторов, и, в первую очередь, от материала световода и длины волны излучения. В таблице 7.2 приведены значения коэффициентов светоослабления (затухания) различных сред, а также для сравнения даны коэффициенты затухания кабелей и атмосферы. .

Из приведенных данных следует, что оптическое волокно имеет достаточно малое затухание, которое зависит от длины волны излучения. На рис. 7.13 приведена спектральная зависимость затухания, на которой ярко выражены минимумы затухания в некоторых диапазонах длин волн. Эти диапазоны длин волн называются окнами прозрачности ВС. Центральные длины волн в этих окнах составляют: 0,85 мкм для первого, 1,3 мкм для второго и 1,55 мкм для третьего окон прозрачности. Первоначально для практического применения было освоено первое окно прозрачности, т.к. уже в середине 70-х годов существовали источники оптического излучения с длиной волны 0,85 мкм, это красная граница видимого спектра. В настоящее время освоены второе и третье окна прозрачности (невидимое излучение) и ведутся работы по освоению ближнего инфракрасного диапазона ( =2–4 мкм). Освоение этого диапазона позволит несколько увеличить диаметр сердцевины одномодового ВС, что упростит технологию производства ВС.

Рисунок 7.13. Спектральная зависимость затухания ВС

Рисунок 7.13. Спектральная зависимость затухания ВС

Таблица 7.2. Затухание для различных сред передачи

Среда распространения

, дБ/км

, мкм

Обычное силикатное стекло

3000

0.4–0.8

Многокомпонентное стекло

30

0.4–0.8

Кварцевое волокно

7

0.85

Кварцевое волокно

2

1.3

Кварцевое волокно

0.5

1.55

Волокна на основе циркониевых стекол

0.01–0.005

2–10.6

Полимерные волокна

200–400

0.4–1.5

Атмосфера

10

0.85

Симметричный кабель

2–5

Коаксиальный кабель

8–13

Основными причинами возникновения потерь в ВС являются поглощение и рассеяние энергии. Потери вследствие поглощения подразделяются на собственные и несобственные. Собственное поглощение вызвано взаимодействием распространяющейся световой волны с компонентами материала световода и оболочки, не содержащего примесей. Поглощение энергии в этом случае ведет к квантовым переходам между различными электронными и молекулярными энергетическими уровнями вещества. Эти явления носят резонансный характер, чем объясняются всплески на кривых (рис. 7.13).

Несобственное поглощение обусловлено наличием примесей даже в ничтожном количестве, исчисляемом иногда единицами атомов примеси на миллион атомов собственного вещества. Особенно значительное поглощение вызывает наличие ионов некоторых металлов (медь, хром, железо, никель) и наличие в материале ионов гидроксильных групп ОН. Основным механизмом этих потерь является резонансное поглощение энергии атомами и ионами примесей на различных длинах волн.

В общем случае в BС в режиме линейной оптики (при малых значениях оптической мощности) наблюдается три основных вида рассеяния: рэлеевское, молекулярное и лучевое. Фундаментальным линейным эффектом является рассеяние Рэлея. Это рассеяние не зависит от интенсивности света. Оно обусловлено микролокальнымифлюктуациями показателя преломления вещества, которые, в свою очередь, возникают за счет микроскопических неоднородностей в материале, т.к. стекло имеет аморфную, а не кристаллическую структуру. Эти неоднородности намного меньше длины волны и растут пропорционально . Эти потери являются неустранимыми.

Увеличение числа компонентов в стекле для формирования необходимого профиля показателя преломления увеличивает рэлеевское рассеяние. Кварцевое стекло имеет минимальные потери на рэлеевском рассеянии.

Полное затухание в материале волоконного световода определяется суммой потерь

; ; ,

где - потери вследствие поглощения; - потери вследствие рассеяния; - собственные потери; - потери рэлеевского рассеяния; - потери молекулярного рассеяния; - потери лучевого рассеяния.

Лучевое рассеяние возникает на крупных частицах, размеры которых больше длины волны излучения. Молекулярное рассеяние возникает на частицах соизмеримых с длиной волны оптической несущей.

Кроме этих потерь в кабеле возникают дополнительные - кабельные потери. При производстве волокна и в процессе его укладки в кабель возникают микро- и макроизгибы. Микроизгибы – это искажения прямолинейности оптического волокна в процессе его производства, макроизгибы возникают при укладке ОВ в кабель. Механизм потерь при микро- и макроизгибах ясен из рис. 7.14. На микроизгибах возникает рассеяние свет, на макроизгибах нарушается условие полного внутреннего отражения.

Рис. 7.14. Механизм потерь на микроизгибах а) и макроизгибах б)

Рис. 7.14. Механизм потерь на микроизгибах а) и макроизгибах б)

Направляющие системы связи


*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.