6.4.1.2. Схема модулятора с шунтирующими нагрузку дросселем и диодом

Изображенная на рис 6.15б полная схема модулятора с шунтирующими магнетрон дросселем и диодом (с учётом паразитных ёмкостей) в отличие от предыдущей обеспечивает малую длительность спада модулирующего импульса. Рассмотрим физические процессы в схеме модулятора при наличии индуктивности L в зарядной цепи. Здесь накопительный конденсатор С заряжается от источника питания Е через сопротивление R1, диод D и дроссель L. Поскольку заряд протекает медленно, индуктивность L не оказывает влияния на этот процесс. Можно считать, что напряжение на магнетроне в интервале между импульсами подмодулятора равно нулю. С приходом положительного импульса на сетку модуляторной лампы она открывается, и начинается формирование фронта импульса напряжения на нагрузке. При этом, как и в предыдущей схеме, паразитная емкость C1 разряжается, а паразитная емкость C2 заряжается, и напряжение на ней растет. Влияние индуктивности L и здесь незначительно, так как за время фронта импульса ток не успевает сколько-нибудь заметно нарасти.

Во время действия плоской части импульса напряжение на нагрузке снижается, что обусловлено, во-первых, частичным разрядом накопительного конденсатора С, а во-вторых, нарастанием тока в катушке индуктивности L (рис.6.17б).

Рис.6.17

В начале импульса этот ток равен нулю, так как накопительный конденсатор заряжен. За малое время фронта ток не успевает заметно измениться. При достижении напряжения на нагрузке значения Еа ток iL в дросселе начинает практически линейно расти (рис.6.17) по закону:

iL,

где rL- активное сопротивление дросселя. Так как << 1, то к концу импульса он становится равным:

ILmax@ (6.13)

Таким образом, форма вершины импульса в этой схеме зависит не только от величины емкости накопительного конденсатора, но и от величины индуктивности L – чем она больше, тем меньше снижение плоской вершины модулирующего импульса.

После окончания импульса подмодулятора лампа запирается, и паразитная емкость C2 начинает разряжаться. Когда напряжение на магнетроне становится меньше порогового E0, магнетрон прекращает работать, то есть RМ=¥. После этого за счет запаса электромагнитной энергии в индуктивности L и паразитной емкости C0 в схеме возникает переходный процесс. Так как характеристическое сопротивление r параллельного контура, образованного индуктивностью L и полной паразитной емкостью схемы C0 (рис.6.15в), всегда намного меньше параллельных ему сопротивлений запертых диода и магнетрона, то переходный процесс имеет колебательный характер, и спад импульса получается очень крутым, что весьма благоприятно. Если бы диода в схеме не было, этот колебательный процесс продолжался бы достаточно долго (по пунктирной линии рис.6.17а), причем, можно показать, что амплитуда колебаний превышает величину анодного напряжения Еа, что недопустимо.

Диод Д в схеме рис.6.15в включен таким образом, что во время первого полупериода колебательного напряжения, возникающего вслед за основным импульсом (и имеющего обратную полярность), он проводит и шунтирует контур LC0 своим малым внутренним сопротивлением Riд. Если внутреннее сопротивление диода меньше характеристического сопротивления параллельного контура образованного L и C0 , то оно шунтирует этот контур, переходный процесс становится апериодическим, и напряжение на контуре быстро спадает до нуля по экспоненте (на рис.6.17а это показано сплошной линией).

При формирование плоской вершины импульса ток через индуктивность L достигает заметной величины, которая в конце плоской части импульса становится равным IL=()t. Поэтому в модуляторе с дросселем и диодом относительное изменение напряжения и тока магнетрона во время плоской части импульса больше, чем в схеме модулятора с шунтирующим магнетрон активным сопротивлением. Это является недостатком схемы модулятора с дросселем и диодом. Наибольший за время импульса ток через дроссель ILmax должен быть намного меньше тока магнетрона. Обычно принимают

ILmax=(0,005¸0,10) Iao .

Тогда:

L=(10¸20) Rмt (6.14)

Спад модулирующего импульса можно разбить на три участка. На первом участке напряжение на магнетроне при уже закрытой модуляторной лампе спадает от значения (Еа - DЕа) в конце вершины до Е0, после чего магнетрон прекращает работать. Это время спада импульса тока магнетрона tci. На этом участке, когда модуляторная лампа уже закрыта, а магнетрон еще работает, паразитная емкость С2 разряжается главным образом через магнетрон, так как токи через сопротивление R1 и дроссель L малы по сравнению с током магнетрона. Длительность спада импульса тока магнетрона оказывается такой же, как в схеме с шунтирующим магнетрон активным сопротивлением.

На втором участке напряжение на магнетроне спадает от Е0 до нуля. И магнетрон, и диод при этом не работают. На этом участке спада модулирующего импульса паразитная емкость С2 разряжается в основном через дроссель L. Как указывалось выше, здесь в схеме имеет место колебательный процесс.

На третьем участке напряжение на магнетроне меняет знак, и диод проводит ток. Здесь разряд должен иметь апериодический характер, поэтому величина внутреннего сопротивления диода должна удовлетворять неравенству

Riд< . (6.15)

Схема модулятора с дросселем и диодом может обеспечить длительность спада модулирующего импульса tc0 = (0,1 – 0,2)t. Однако из-за диода увеличивается паразитная емкость C2 и усложняется схема модулятора. Поэтому иногда вместо диода последовательно с дросселем включают активное сопротивление R. При этом послеимпульсный колебательный процесс в контуре LC0R сохраняется, однако амплитуда колебаний невелика и имеет резко выраженный затухающий характер.

Если принять, что ток через дроссель в течение времени t»t нарастает линейно, то его эффективное значение может быть вычислено с достаточной степенью точности по формуле:

ILeff @

Режим работы магнетрона контролирует прибор, измеряющий среднее значение импульсного тока. Этот прибор включают так, как показано на рис.6.15г, где этот прибор измеряет зарядный ток, равный среднему значению импульсного тока магнетрона. В самом деле, за время заряда tзар @ Т накопительный конденсатор приобретает заряд Dqзар = CUc. Среднее значение зарядного тока равно:

iзар.ср.=

Среднее значение импульсного тока магнетрона (если импульс имеет прямоугольную форму) равно:

iм.ср. = ,

где Ia - ток магнетрона в импульсе. Но Iat = qзар, так как во время импульса накопитель отдает весь приобретенный во время паузы заряд. Емкость блокировочного конденсатора Сбл (рис.6.15г) выбирают так, чтобы его сопротивление Хсбл на частоте F было намного меньше сопротивления rпр рамки прибора, т.е. 1/Ωt << rпр.

Модуляторная лампа здесь выбирается так же, как в схеме с резистором в зарядной цепи.

Устройства генерирования и формирования радиосигналов


*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.