***** Google.Поиск по сайту:


6.4.2.2. Схема модулятора с зарядным диодом

Устройства генерирования и формирования радиосигналов

6.4.2.2. Схема модулятора с зарядным диодом

Для получения стабильной величины напряжения заряда накопителя требуется высокая точность срабатывания коммутирующего прибора. В схеме модулятора, изображенной на рис.6.18, в зарядной цепи последовательно с зарядным дросселем включен диод Д1, благодаря которому разряд накопителя будет происходить всегда при одном и том же напряжении, равном максимальному напряжению . Напряжение на накопителе достигает максимального значения при t=Tз/2. При t>Tз /2 зарядный ток изменяет направление на обратное. Так как диод не пропускает тока обратного направления, то разряд накопителя через источник питания при t>Tз/2, невозможен, и напряжение на накопителе остается неизменным и равным вплоть до момента коммутации. Для того чтобы коммутация происходила всегда после того, как напряжение заряда накопителя достигнет максимального значения, обычно принимают равным (0,8¸0,9)Т, поэтому в схеме с фиксирующим диодом индуктивность зарядного дросселя Lз вычисляют по формуле:

(6.22)

Уменьшение индуктивности зарядного дросселя по сравнению с величиной, определяемой формулой ( 6.20) , нежелательно, так как при этом напряжение на линии будет нарастать чересчур быстро и может достигнуть значительной величины раньше, чем произойдет полная деионизация тиратрона. В этом случае возможно повторное зажигание тиратрона задолго до появления на его сетке поджигающего импульса.

Схема модулятора с фиксирующим диодам позволяет изменять частоту следования импульсов. Если период следования импульсов изменяется в пределах от до , то параметры зарядной цепи следует подобрать так, чтобы выполнялось условие . КПД зарядной цепи в схеме с фиксирующим диодом

несколько ниже, так как при включении диода снижается добротность зарядной цепи Qзар.

Цепь разряда накопителя

Цепь разряда накопителя в схеме рис.6.18 содержит искусственную линию, коммутирующий прибор и нагрузку - генератор СВЧ. В тех случаях, когда в качестве генератора СВЧ используется магнетрон, связь модулятора с генератором осуществляет с помощью выходного импульсного трансформатора.

Импульсный трансформатор

Импульсный трансформатор согласует низкоомное выходное сопротивление

модулятора, равное волновому сопротивлению линии r, с высокоомным входным сопротивлением генератора СВЧ, которое в данном случае принимается равным статическому сопротивлению магнетрона в рабочей точке RМ. Поэтому коэффициент трансформации импульсного трансформатора должен быть равен:

nи = (6.23)

Для неискаженной трансформации модулирующего импульса величина nи должна на быть не более пяти. То обстоятельство, что импульсный трансформатор является повышающим, позволяет понизить напряжение источника питания. Кроме того, трансформатор изменяет полярность модулирующего импульса, то есть знак выходного напряжения относительно земли.

Искусственная линия

При выборе числа ячеек N накопительной линии необходимо учитывать возможное искажение формы импульса при его трансформации, поэтому, принимая во внимание (6.8), N рассчитывают по формуле:

N=0,4 , (6.24)

где k=0,5¸0,8.

Цепи коррекции формы импульса

1. Согласующая цепь

Во время формирования фронта модулирующего импульса, когда напряжение на магнетроне еще не достигло величины порогового , искусственная линия разряжается на рассогласованную нагрузку, поскольку сопротивление магнетрона бесконечно велико. При этом в начальной части модулирующего импульса получится значительный выброс, что может привести к перенапряжению в схеме и нарушению стабильной работы. Для обеспечения постоянства нагрузки модулятора при формировании фронта и начальной части вершины импульса на выходе модулятора включается согласующая цепь R1C1. При включении этой цепи со стороны первичной обмотки (рис.6.18) сопротивление R1 должно быть равно волновому сопротивлению искусственной линии:

(6.25)

Емкость конденсатора C1 выбирается такой величины, чтобы время установления напряжения на нем равнялось времени формирования фронта модулирующего импульса. Если принять , то при этом

(6.26)

2. Цепь снятия послеимпульсного напряжения.

Для уменьшения амплитуды послеимпульсного выброса (обусловленного энергией, накопленной в импульсном трансформаторе) в модуляторах используют специальные цепи. На схеме рис.6.18 показана простейшая цепь снятия послеимпульсного напряжения, состоящая из диода Д3 и сопротивления R3. Работа этой цепи аналогична работе диода в рассмотренной выше схеме модулятора с частичным разрядом накопительного конденсатора и параллельными нагрузке дросселем и диодом. Полное активное сопротивление цепи снятия послеимпульсного напряжения должно быть такой величины, чтобы по окончании действия основного импульса переходный процесс в паразитном контуре , где Lm - индуктивность намагничивания импульсного трансформатора, был апериодическим. Для этого требуется, чтобы

, (6.27)

где Riд3- внутреннее сопротивление диода Д3; сопротивление R3 ставится для уменьшения тока через диод.

3. Цепь снятия напряжения перезаряда линии.

  Рис.6.20

Нарушение режима согласования выхода модулятора со входом генератора сказывается главным образом на форме модулирующего импульса и на его величине. Выше было показано, что если сопротивление нагрузки меньше волнового сопротивления линии напряжение на нагрузке имеет знакопеременный характер (рис.6.21в). При работе на рассогласованную нагрузку напряжение на линии при колебательном заряде описывается уравнением (6.18) :

.

В момент коммутации, то есть при , напряжение на линии . Так как при ( R’г - приведённое к первичной обмотке импульсного трансформатора сопротивление генератора СВЧ) остаточное напряжение на линии отрицательно, то максимальное напряжение на линии равно:

Из формулы (6.6) следует, что при разряде линии на рассогласованную нагрузку остаточное напряжение равно:

,

поэтому при искрении магнетрона, когда , и . Если рассогласование остается и в последующие периоды работы, то напряжение на линии будет увеличиваться (рис.6.20), что может привести к выходу из строя элементов модулятора. Для устранения этого явления используется цепь снятия напряжения перезаряда линии, которая состоит из диода Д2 и добавочного сопротивления R2, включенных на входе формирующей линии (рис.6.18). При нарушении согласования эта цепь должна за короткий интервал времени tсн разрядить линию и обеспечить нормальные начальные условия для следующего зарядного цикла. Время tсн должно составлять 1-2% времени заряда линии, которое приблизительно равно периоду следования импульсов Т. Если время перезаряда линии tсн принять равным 3(RiД2 +R2) Cд , то

, (6.28)

где RiД2 - внутреннее сопротивление диода Д2 , - полная емкость линии. Величина сопротивления R2, выбирается так, чтобы ток через диод Д2 был не больше допустимого.

Подмодулятор

Управление ионным коммутатором осуществляется подмодулятором, который в данном случае является генератором поджигающих импульсов. Для поджига водородного тиратрона требуется импульс положительной полярности с амплитудой напряжения до нескольких сотен вольт. Форма поджигающего импульса значения не имеет, к ней предъявляется лишь требование достаточно большой крутизны фронта для уменьшения разброса во времени зажигания водородного тиратрона. Требования к поджигающему импульсу (амплитуда выходного напряжения и выходного тока, длительность импульса tип и скорость нарастания фронта) приводятся в паспорте тиратрона.

Генератор поджигающих импульсов водородных тиратронов обычно имеет на выходе катодный повторитель. Между катодным повторителем и тиратроном включают фильтр нижних частот, частота среза которого равна fср= 1/ t ип.

Цепи питания магнетрона

Для того, чтобы вторичная обмотка трансформатора накала магнетрона не находилась под высоким импульсным напряжением, в схеме на рис.6.18 модулирующее напряжение подается на магнетрон через трансформатор с двумя вторичными обмотками, которые по импульсному напряжению соединены параллельно конденсатором С1 (клеммы 1 и 2) и конденсаторами С2 и С3 (клеммы 3 и 4). Причем, клеммы 3 и 4, а следовательно, и клеммы 5 и 6 накального трансформатора, по импульсному напряжению соединены с корпусом, поэтому максимальный потенциал вторичной обмотки по отношению к корпусу практически равен амплитудному значению напряжения накала магнетрона. Особенностью такой схемы является то, что по вторичной обмотке импульсного трансформатора протекает ток накала магнетрона . Конденсатор С1 предназначен для устранения возможного неравенства импульсного напряжения между секциями вторичной обмотки импульсного трансформатора. Его емкость должна быть выбрана так, чтобы он имел достаточно большое сопротивление для тока накала магнетрона. Обычно C1»1 мкФ. Емкость конденсаторов С2 и С3 должна быть такой, чтобы напряжение DU, нарастающее на этих конденсаторах за время импульса магнетрона, не могло вызвать пробоя в накальном трансформаторе; DU принимают равным 50В. Через каждую из половин вторичной обмотки импульсного трансформатора протекает половина импульсного тока магнетрона i=0,5Ia. Емкости С2 и С3 определяются формулой:

(6.29)

Конденсатор С4 предохраняет прибор, измеряющий среднее значение тока магнетрона Iaср= Ia/q, где q - скважность, от переменных составляющих импульсного тока, эффективное значение которых Iaeff= Ia/, т.е. в раз больше среднего значения. Емкость этого конденсатора выбирают так, чтобы его сопротивление для составляющей с частотой F было во много раз меньше сопротивления рамки прибора, контролирующего средний ток магнетрона.

Устройства генерирования и формирования радиосигналов



***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.