1.13.2. Ключевые транзисторные генераторы с формирующим контуром

В схемах КГ с формирующим контуром нагрузкой транзистора является колебательный контур, настроенный на частоту, близкую к рабочей. Паразитные реактивности здесь являются составной частью элементов контура, благодаря этому такие схемы работают на более высоких частотах, чем схемы с резистивной нагрузкой: до 100150 МГц.

Однако, использование колебательного контура с заданной настройкой ухудшает диапазонные свойства генератора - fmax/fmin=1.051.1, что ограничивает область их применения. Одна из схем ключевого генератора с формирующим контуром приведена на рис.1.41а, где паразитные реактивности Сп и Lп входят в состав контура LкСк, настроенного на частоту, близкую к рабочей. Работу схемы поясняет рис.1.41.

Транзистор находится в одном из двух состояний - отсечки или насыщения. Он закрывается, когда напряжение на коллекторе ек (на емкости Ск) становится равным нулю (на рис.1.41б) ключ разомкнут). Ток возбуждения и его частота выбраны так, что в момент времени t1 (рис.1.41в) транзистор открывается (ключ на рис.1.41б) теперь замыкается на последующую половину периода). При этом конденсатор Ск шунтируется малым сопротивлением насыщения транзистора rнас, и колебания в контуре прекращаются. В схеме происходят следующие процессы. В интервале времени t1 £t< t2 (рис.1.41в, эпюра 1) транзистор находится в состоянии насыщения (ключ на рис.1.41б замкнут). Предполагается, что в течение предыдущего полупериода конденсатор Ск к моменту времени t = t1 разрядился полностью, т.е. при t = t1 заряд конденсатора Ск равен нулю. Сопротивление насыщения rнас очень мало, его можно принять равным нулю. В этом предположении, при котором напряжения на коллекторе и на конденсаторе Ск совпадают, построены все эпюры на рис.1.41в. Тогда в течение всего интервала времени t1- t2 напряжение на коллекторе ек=0.

Процессы в этом интервале описываются уравнениями:

Еаб = Ек- Lк =0,

Еаб = + iнRн=0, … (1.37)

iк= iL+iн ,

где qр – заряд на разделительной емкости Ср.

Ток iL через индуктивность определяется в результате интегрирования первого уравнения с начальным условием iL1 =- iн. Последнее следует из того, что в момент замыкания ключа коллекторный ток отсутствует, iк(t1)=0. Тогда:

iL= (t-t1) + iL1 = (t-t1) - iн(t1) , …(1.38)

Дифференцируя второе из уравнений (1.37), получим:

=0,

b

Рис.1.41

откуда, с учетом того, что RнСр>>Т/2 (t2 - t1 = Т/2) имеем:

iн = iн1 » iн1,

Таким образом, ток iн(t) через нагрузку Rн в течение полупериода t1 £t< t2 практически не меняется, он близок к начальному значению iн(t1) (рис.1.41в, эпюра 6). Поскольку разделительная емкость Ср фактически заряжена до напряжения источника Ек, ток iн(t) равен

iн ≈ iн1к/Rн ,

Из третьего соотношения (1.37) и равенства (1.38) определяется ток iк через транзистор:

iк= iL+ iн = (t-t1) + iL1+ iн1 = (t-t1),

В момент времени t=t2 транзистор переходит из состояния насыщения в состояние отсечки (рис.1.41в, эпюра 1) (на эквивалентной схеме рис.1.41б ключ разомкнут). Здесь ток iк(t) исчезает (рис.1.41в, эпюра 3), и начинается заряд емкости Ск от источника питания Ек через катушку индуктивности Lк током iL, который при t=t2 максимален. Ток iс при t=t2 также максимальный, он равен приблизительно току iL(t2) (рис.1.41в, эпюры 5 и 4). По мере заряда емкости Ск напряжение на ней растет, а ток iс уменьшается (рис.1.41в, эпюра 4). Ток iL через катушку индуктивности Lк тоже уменьшается, но медленнее, чем ic – в соответствии с равенством iн+ iL= iс и отрицательным знаком тока iн в течение почти всего полупериода t2< t< t5 (рис.1.41в, эпюры 4,5 и 6). Ток iс обращается в нуль в момент t=t3, когда напряжение ек на емкости Ск максимально, после чего он меняет направление, становясь отрицательным. Ток iL при t>t3 продолжает уменьшаться, но при t=t3 он еще не меняет направления (рис.1.41в, эпюры 2,4,5 и 6).

Баланс напряжений в цепи Lкк-Eк описывается уравнением:

Ек=Lк ек

В интервале времени (t3 -t5) конденсатор Ск разряжается. Ток iL через индуктивность достигает минимума ( =0), когда напряжение на емкости Ск становится равным напряжению источника питания Ек (это происходит при t=t4) (рис.1.41в, эпюры 2,4 и 5). Потом ток iL начинает расти, достигая значения -iн(t1) в момент окончания цикла при t=t5, когда напряжение на конденсаторе и ток через конденсатор обращаются в нуль (рис.1.41в, эпюры 4-6). Ток iс через конденсатор достигает минимума в момент времени t, которому соответствует точка перегиба кривой напряжения на нем ек(t) ( =0) (рис.1.41в, эпюры 2 и 4).

В зависимости от величины внесенного в контур сопротивления rвн=(wLк)/Rн разряд конденсатора происходит поразному. На рис.1.41в, эпюра 2) кривая разряда 1 соответствует разряду при слишком большом затухании, кривая 2 - при малом, кривая 3 - при оптимальном, когда в момент времени t1 (и t5) и напряжение ек=0, и ток в индуктивности Lк iL(t1) = 0. При t =t5 начинается новый цикл. При оптимальном режиме к моменту замыкания ключа (t=t1, t=t5) ек=0, это означает отсутствие энергии в конденсаторе Ск к моменту переключения, т.е. отсутствие коммутативных потерь. При =0 ток iк начинает нарастать с нуля без скачка. При rн ¹0 в состоянии насыщения появляется остаточное напряжение на коллекторе транзистора uк(t)=rнасiк(t) (штриховая линия на рис.1.41в, эпюра 2) и возникают потери, мощность которых определяется формулой Рпот= . Как показывают расчеты, при относительно малом сопротивлении насыщения ( £ 0,01) эти потери малы. Таким образом, суммарные потери при оптимальном режиме малы.

Во втором полупериоде, когда транзистор заперт, ток iн в нагрузке меняет направление на обратное. К концу этого полупериода он снова меняет знак. Таким образом, в интервале времени t3-t4 ток iн(t) должен иметь минимум (рис.1.41в, эпюра 6).

Из рис.1.41в видно, что напряжение на коллекторе ек, а значит и на нагрузке, отличается от гармонического, поэтому перед нагрузкой включают фильтр, например, последовательный колебательный контур, настроенный на рабочую частоту и имеющий добротность Q³3. Режим работы генератора при этом практически не меняется. Известно, что КПД по первой гармонике генератора с формирующим контуром при работе в оптимальном режиме практически равен электронному КПД: hк1@ hЭ. Показатели КУМ почти не меняются в диапазоне рабочих частот fр@(0,5-0,85)fрез, где fрез - резонансная частота формирующего контура:

fрез= .

Следует, однако, отметить, что реализация оптимального режима, связанная с определением параметров схемы, - задача достаточно сложная, требующая составления и решения системы дифференциальных уравнений, описывающих работу схемы в каждый момент времени. Без применения ЭВМ решение такой задачи практически невозможно [3]. Изменение сопротивления нагрузки, напряжения возбуждения или рабочей частоты приводят к нарушению условий существования оптимального режима, в результате возрастают коммутационные потери и падает энергетическая эффективность генератора.

Существенным недостатком ключевых генераторов с формирующим конуром является высокое напряжение на транзисторе: Uкmax =(3,3-4)Ек, в связи с этим приходится понижать напряжение Ек , что снижает выходную мощность и КПД.

Двухтактные ключевые генераторы по частотным свойствам несколько уступают однотактным. Это объясняется неоптимальными условиями коммутации транзисторов (скачкообразным изменением либо тока, либо напряжения при переключениях) и задержкой их выключения вследствие рассасывания избыточных носителей, накопленных в области базы при насыщении. Преимуществом двухтактных генераторов по сравнению с однотактными является меньшее отношение максимального напряжения на транзисторе к напряжению источника питания, что позволяет увеличить мощность, получаемую от одного прибора. Поэтому там, где инерционность транзисторов и связанные с ней потери при коммутации не имеют значения, предпочтительно применение двухтактных схем.

Апериодические ключевые усилители (КУМ), называемые усилителями класса D, применяют главным образом для усиления колебаний звуковых частот. Принцип их действия состоит в преобразовании усиливаемого сигнала в последовательность модулированных по ширине импульсов (ШИМ) с тактовой частотой FТ, усилении их ключевыми усилителями и последующим выделении в нагрузке низкочастотной составляющей сигнала с ШИМ фильтром низкой частоты (ФНЧ).

Эффективность КУМ на электронных лампах в диапазоне радиочастот оказывается невысокой из-за больших коммутационных потерь, поэтому ключевой режим в ламповых ВЧ генераторах обычно не используется. При частотах ниже 100 кГц ламповые усилители НЧ класса D, работающие с повышенным КПД, в настоящее время вытесняют двухтактные трансформаторные модуляторы класса В. Одна из возможных схем мощного высоковольтного ключевого лампового модулятора класса D с модуляционным дросселем Lм и диодом Д. При изменении длительности tи управляющего импульса на сетке лампы Лм модулятора изменяется среднее значение токадиода и соответственно и среднее значение напряжения на нагрузке Uн=I0RH(1- , где I0 - ток в дросселе Lм. Достоинствами этой схемы являются наличие общей шины источника питания, лампы модулятора Лм и нагрузки RН, возможность использования источника анодного питания с пониженным напряжением Еа=Uнм/(2…3), а также возможность использования модуляционного дросселя Lм в качестве элемента фильтра высоковольтного источника питания Еа.

Устройства генерирования и формирования радиосигналов


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.