2.2.2. Диодные оптопары

Оптопары этого типа изготовляют на основе кремниевых p-i-n-фотодиодов и арсенидгаллиевых светодиодов.

На рис. 2.4 изображены типичные графики зависимостей коэффициента передачи по току kI от входного тока I1, напряжения на выходе U2 и температуры Т. Из рис. 2.4, а следует, что у диодных оптопар kI остается практически постоянным в широком диапазоне входных токов, что обусловлено постоянством в этом диапазоне квантового выхода ηк светодиода. Подъем в области малых и спад в области больших входных токов (когда начинает сказываться разогрев прибора) также определяется поведением ηк (см. 1.2.2). Квантовый выход фотодиода η3 при этом, как правило, не меняется. Это следует, в частности, из рис. 1.5 и формулы (1-11) — зависимость фототока от падающего потока излучения линейна в рабочем диапазоне значений потоков.

Разогрев оптопары может привести и к снижению η3.

Оценим значение kI для диодной оптопары.

Поток излучения Ф1, испускаемого светодиодом, связан с входным током I1 соотношением

. (2.5)

(Здесь ηке — внешний квантовый выход светодиода — см. 1.2.2). В то же время ток на выходе фотоприемника

(2.6)

где η3 — квантовый выход фотодиода, а Ф2— поток излучения, падающий на фотодиод (см. 1.1.4).

Из соотношений (2.5) и (2.6) получаем, что

(2.7)

где = Ф21 — коэффициент, учитывающий потери излучения на пути от светодиода к фотоприемнику.

Полагая, что η3≈1 (т.е. каждый фотон, достигнувший фотоприемника, генерирует носитель фототока; это хорошо выполняется, например, в случае p-i-n-фотодиодов), получаем:

kI ≈ ηкеk/.

В идеальном случае, когда потерь света почти не происходит, можно считать, что kI≈ηке, однако зачастую коэффициент k' оказывается заметно меньше единицы. Учитывая, что у реальных светодиодов ηке≈10%, получаем, что для диодных оптопар коэффициент kI вряд ли может превышать нескольких процентов.

Подпись: Рис. 2.4. Зависимости коэффициента передачи по току от условий работы для диодной оптопары

Помимо зависимости kI (I1) на рис. 2.4 представлены еще две. Так, на рис. 2.4,б изображена зависимость коэффициента передачи по току диодных оптопар от обратного напряжения на выходе прибора— она довольно слаба. Температурная же зависимость kI диодных оптронов выражена более ярко (рис. 2.4, в), что объясняется зависимостью от Т параметров всех элементов оптопары и в первую очередь—излучателя.

В целом, поскольку у современных диодных оптронов значение коэффициента передачи по току составляет единицы процентов, это означает, что на выходе таких оптопар практически можно получать лишь токи, не превышающие одного-двух миллиампер.

Предельно достижимое время переключения tп диодных оптопар может меняться в довольно широких пределах (0,1 — 10 мкс) в зависимости от марки прибора. Но на практике получить подобное быстродействие довольно трудно, так как из-за малости выходного тока их приходится включать на большую нагрузку. В этом случае существенным оказывается уже время перезарядки, определяемое сопротивлением нагрузки Rн и выходной емкостью оптопары С2. Так, при Rн =(2÷20) кОм и С2 = 50 пФ постоянная времени перезарядки равна 0,1—1 мкс, что сравнимо по величине с предельными значениями tп.

Диодные оптопары могут работать в вентильном режиме, когда оптрон выступает в качестве источника питания. Оптроны, предназначенные для этих целей, имеют повышенное (3–4%) значение kI, однако к. п. д. таких приборов также составляет лишь около одного процента.

Среди выпускаемых диодных оптопар можно выделить, наконец, группу приборов, оптический канал которых выполнен в виде световода длиной 30—100мм. Эти приборы характеризуются высокой электрической прочностью (Uиз = 20≈50 кВ) и малой проходной емкостью пр=0,01 пФ).

Введение в оптоэлектронику


*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.