2.3.2. Управление процессами в высоковольтных цепях

Подпись: Рис.2.10. Высоковольтный оптоэлектронный ключ

Для бесконтактного управления процессами в высоковольтных (до 1300 В) и сильнотоковых (до 320 А) цепях используют мощные ключевые оптроны, типичными представителями которых являются тиристорные и транзисторные оптопары. По своим техническим показателям оптоэлектронные переключатели успешно конкурируют с электромагнитными реле и герконами (герметизированными переключателями), превосходя их по надежности, долговечности и помехоустойчивости.

Пример схемного варианта высоковольтного оптоэлектронного ключа, в котором тиристорный оптрон, переключающий ток в цепи с постоянным напряжением, управляется сразу по двум каналам—оптическому и электрическому, приведен на рис. 2.10. Если входной транзистор Т1 открыт и работает в режиме насыщения, то на выходе усилителя у поддерживается высокий потенциал и ток течет лишь через излучатель тиристорной оптопары — фототиристор включен. Для его выключения транзистор Т1 запирается, в результате чего, во-первых, снижается напряжение на светодиоде тиристорной оптопары, и он перестает излучать свет, и, во-вторых, на шину нулевого потенциала закорачивается управляющий электрод фототиристора. Закорачивание обусловлено тем, что после снижения напряжения на выходе усилителя—инвертора у светодиод транзисторной оптопары открывается и через фотоприемник начинает течь ток, переводящий транзистор Т2 в режим насыщения. Подобная схема может управлять током в цепи постоянного напряжения 50—400 В, причем длительность переключения фототиристора составляет 5—10 мкс.

Обобщенным параметром, характеризующим качество ключевых оптронов, является отношение максимальной мощности коммутируемой цепи к входной мощности, необходимой для управления. Это отношение носит название коммутационной добротности и для современных оптронов составляет примерно 102—106.

Для управления цепями высокого напряжения могут применяться и оптопары других типов. Так, в схемах управления электролюминесцентными индикаторами (см. 5.3.2), возбуждающимися переменным напряжением с амплитудой 115— 300 В, используют резисторные оптроны. В цепь питания индикатора включают фоторезистор оптопары; изменение напряжения на индикаторе (а следовательно, и яркость его свечения) регулируют малым сигналом на входе оптрона.

В высоковольтных цепях находят широкое применение оптоизоляторы — оптопары с высоким допустимым напряжением изоляции (и, в частности, с волоконно-оптическими каналами). Использование оптронов этого типа в системах энергораспределения, высоковольтных СВЧ-устройствах, аппаратуре привода, в линиях электропередачи позволяет не только с успехом заменять традиционно использующиеся элементы, но и стимулирует дальнейшее совершенствование вновь разрабатываемых для этих целей приборов.

Введение в оптоэлектронику


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.