3.2.1. Электрооптические дефлекторы

Распространенными элементами в системах оптической обработки информации являются устройства для изменения пространственного положения светового луча — так называемые дефлекторы (от лат. deflectio — отклоняю). Различают дефлекторы с дискретным набором положений отклоненного луча, а также предназначенные для его непрерывной развертки — сканеры.

Как уже отмечалось, обыкновенный и необыкновенный лучи, вышедшие из двулучепреломляющего кристалла, линейно поляризованы во взаимно перпендикулярных плоскостях. Если на плоскопараллельную пластину, вырезанную из такого кристалла под углом к его оптической оси, направить свет, поляризованный в плоскости поляризации обыкновенного луча, на выходе кристалла необыкновенный луч будет отсутствовать, а обыкновенный луч пройдет сквозь кристалл, не изменяя своего пространственного положения. Если же плоскость поляризации падающего на пластину луча повернуть на 90°, сквозь кристалл пройдет только необыкновенный луч, который уже не будет продолжением первичного, а параллельно сместится относительно него. Другими словами, с помощью поляризатора можно выделить один из двух пространственно разделенных лучей, выходящих из кристалла. В дефлекторах ориентацию плоскости поляризации первичного луча изменяют не поворотом поляризатора, а используют электрооптическую ячейку, при прохождении через которую в отсутствие управляющего напряжения U поляризация света не изменяется, а при U, равном полуволновому Uλ/2, плоскость поляризации поворачивается на 90°, что и требуется для работы дефлектора. Смещение луча зависит от материала, из которого вырезана двоякопреломляющая пластина, и от ее толщины, т. е. оно не может управляться электрически. Чтобы луч на выходе дефлектора мог иметь множество положений, свет пропускают через последовательность пар «электрически управляемый модулятор поляризации — двоякопреломляющая пластина» (рис. 3.3). Для получения одинакового шага в дискретной последовательности положений светового луча на выходе дефлектора необходимо, чтобы толщина двоякопреломляющих кристаллов, расположенных каскадно друг за другом, отличалась в два раза.

Пусть для определенности главное сечение всех кристаллов (плоскость, проходящая через направление луча света и оптическую ось кристалла) совпадает с плоскостью рисунка. Направим на дефлектор линейно поляризованный луч, так чтобы плоскость электрического вектора в световой волне была перпендикулярной главному сечению кристаллов. Если на все модуляторы поляризации напряжение не подано, плоскость поляризации луча не изменяется, он не отклоняется от первоначального направления распространения и на выходе устройства окажется в положении 1. Подадим теперь на третий модулятор поляризации напряжение U3, равное полуволновому, т. е. поворачивающее плоскость поляризации света на 90°. Это соответствует плоскости поляризации необыкновенного луча в третьей двоякопреломляющей пластине. В этом случае луч отклонится, выйдя из пластины в направлении 2. Чтобы луч на выходе модулятора занял положение 3, нужно приложить полуволновое напряжение ко второму каскаду модулятора, толщина двулучепреломляющей пластины в котором в два раза больше, чем в третьем, а чтобы луч не отклонился третьим каскадом, нужно подать напряжение Uλ/2 как на второй, так и на третий каскады. Для того чтобы световой луч на выходе попал в точку 4, полуволновое напряжение нужно подать только на второй каскад и т. д. (табл. 3.1).

Для расширения диапазона отклонения луча вдвое (при том же шаге) в устройство, изображенное на рис. 3.3, нужно ввести каскад с двулучепреломляющей пластиной в два раза толще по сравнению с первым каскадом. Дальнейшее расширение диапазона отклонения луча требует введения каскадов с еще более толстыми пластинами.

При помощи m-каскадного дефлектора можно получить 2т дискретных положений светового луча на выходе. Для получения общего числа положения луча, например равного 256, необходим 8-каскадный дефлектор. Чтобы получить отклонение луча по двум координатам, в дефлектор вводят двулучепреломляющие кристаллы, главные сечения которых взаимно перпендикулярны (при этом вполне достижимы 104—105 разрешаемых положений луча на выходе при времени переключения 10-6 —10-7 с). Очевидно, что совершенно не обязательно, чтобы толщина двулучепреломляющих пластин уменьшалась в направлении распространения светового луча. Если она будет не такой, как на рис. 3.3 (в обратном порядке или вперемежку), изменится только коммутация управляющих напряжений.

Таблица 3.1. Коммутация управляющих напряжений трехкаскадного дефлектора, изображенного на рис. 3.3.

Напряжение

Положение

луча

U1

U2

U3

0

0

0

1

0

0

+

2

0

+

+

3

0

+

0

4

+

+

0

5

+

+

+

6

+

0

+

7

+

0

0

8

Подпись: Рис. 3.3. Устройство трехкаскадного дефлек-тора с восемью положениями светового луча на выходе

 

Одним из основных параметров дефлектора является разрешающая способность, которая для рассматриваемого устройства определяется материалом и толщиной двулучепреломля-ющих пластин l, а также их ориентацией относительно оптической оси кристалла. Очевидно, отклонение необыкновенного луча h равно ltgψ, где ψ —угол отклонения луча в пластине (рис.3.3).

В дефлекторах могут применяться те же материалы, что и в электрооптических модуляторах: KDP, ADP, DKDP, LiNbO3, BaTiO3 и др. Применяется также минерал кальцит СаСО3 (56% СаО + 44% СО2 с примесями) или его особо прозрачная разновидность — исландский шпат, обладающие высоким двойным лучепреломлением. На длине волны 0,63 мкм угол ψ для кристалла KDP, например, равен ~1,5°, для кальцита — около 6°. Следует подчеркнуть, что отклонение луча на выходе дефлектора рассмотренного типа не зависит от напряжения на модуляторе поляризации. Если сделать его не равным Uλ/2, положение необыкновенного луча не изменится, а только уменьшится его интенсивность. Кроме того, на выходе дефлектора появится обыкновенный луч, интенсивность которого будет возрастать по мере уменьшения U по сравнению с Uλ/2. Это позволяет использовать дефлектор в качестве модулятора.

Непрерывное отклонение (сканирование) луча можно получить, используя призму из электрооптического материала (например, KTN, KDP, ВаТiO3) с нанесенными на ее торцовых гранях металлическими электродами, к которым прикладывается управляющее напряжение U. Угол θ, под которым луч выходит из призмы, зависит от показателя преломления материала призмы, а значит, и от U. Разрешающая способность сканера определяется как отношение максимального изменения угла Δθ к расходимости луча δθ. Значение Δθ / δθ для призменного электрооптического сканера может достигать ~1•102.

Введение в оптоэлектронику


*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.