3.3.3. Различные типы оптически управляемых транспарантов

Многообразие задач, которые можно решать с использованием ОУТ, оптимизация их параметров для каждого конкретного случая привели к поиску различных конструкций, используемых материалов для фоточувствительного и модулирующего слоев, привлечению различных механизмов, приводящих к модуляции света, и т. п.

В оптическом транспаранте типа Фототитус (Fototitus) в качестве фотопроводника используется аморфный селен, а модулирующего материала — кристалл KDP или DKDP. Транспарант помещают в вакуумную камеру и понижают его температуру примерно до - 50°С (обычно при помощи термоэлектрического холодильника). Охлаждение уменьшает рабочее напряжение устройства до 100—200В, а время хранения информации увеличивается до 1 ч по сравнению с ~0,2 с при комнатных температурах, т. е. можно считать, что в течение нескольких минут не происходит заметного уменьшения контраста записанного изображения. Запись производят экспонированием изображения в ультрафиолетовой или синей области спектра, считывание — в красной (например, гелий-кадмиевым и гелий-неоновым лазерами). Стирание зарядового рельефа, а значит, и пространственного распределения двойного лучепреломления осуществляют равномерной засветкой от дополнительного источника, например импульсной ксеноновой лампой. Длительность записи и стирания информации в устройстве Фототитус довольно мала и составляет ~1·10-4с. При толщине кристалла DKDP около 100 мкм пространственное разрешение транспаранта не хуже 20 лин/мм. Широкому использованию устройства в современных системах обработки информации препятствует необходимость вакуумирования и охлаждения.

Интересны аспекты применения в оптически управляемых ПВМС ЦТСЛ-керамики. В этом случае (рис. 3.6, а) на плоскопараллельную керамическую пластину наносят фотопрово-дящий слой, например поливинилкарбазол (ПВК), а затем на обе внешние поверхности — прозрачные электроды. Структуру приклеивают к оргстеклу, которое несколько изгибают, в результате чего в керамике создается механическое напряжение. Это приводит к тому, что электрические домены в керамической пластине, направление которых было в исходном состоянии хаотическим, ориентируются вдоль направления механического напряжения, причем парами и антипараллельно, так что результирующая поляризация керамической пластины равна нулю. К прозрачным электродам прикладывают электрическое напряжение U, однако несколько меньшее, чем требуется для переориентации доменов вдоль направления внешнего электрического поля. Если, не снимая U, структуру осветить, сопротивление фотопроводящего слоя уменьшится, большая часть напряжения окажется приложенной к керамической пластине, что приведет к ориентации электрических доменов вдоль направления электрического поля. Таким образом, при проецировании на транспарант изображения в освещенных местах двойное лучепреломление исчезает. Считывание записанной информации можно произвести, используя поляризатор и анализатор, стирание—засветкой всей пластины при U =0.

Кроме двойного лучепреломления в ОУТ на основе крупнозернистой ЦТСЛ-керамики используют эффект рассеяния. В этом случае механическое напряжение в пластине не создается. Под действием внешнего электрического напряжения и равномерного освещения пластина поляризуется. Затем полярность внешнего источника изменяют на противоположную, но напряжение устанавливается меньшее, так чтобы переполяризация не происходила. Если теперь на ОУТ направить управляющий световой пучок, то в освещенных местах домены разориентируются, что приведет к локальному рассеянию света. Для стирания записанной информации транспарант равномерно засвечивают при включенном поляризующем напряжении, в результате чего домены ориентируются параллельно полю и пластина становится прозрачной.

Подпись: Рис.3.7. Оптически управляемый транспарант на основе об-ратного пьезоэлектрического эф¬фекта при отсутствии управ-ляющего света (а) и при  освещении  через  маску (б):
 1 — прозрачный электрод, 2— фотопроводящий слой,  3 — модулирующий  слой,  4—зеркально отражающий  слой,  
5—маска  с отверстиями

Наконец, в ОУТ на основе мелкозернистой ЦТСЛ-керамики можно использовать обратный пьезоэлектрический эффект—изменение геометрических размеров тела под действием внешнего электрического поля. В транспаранте такого типа один из электродов представляет собой зеркально отражающий слой (рис. 3.7, а). Сначала пластину равномерно освещают со стороны фотопроводящего слоя и между прозрачным и непрозрачным электродами прикладывают напряжение, необходимое для поляризации керамики. Затем полярность источника изменяют на противоположную, одновременно уменьшив напряжение до уровня, недостаточного для переориентации электрических доменов в темноте. Если на ОУТ спроецировать изображение, то в освещенных местах сопротивление фотопроводящего слоя станет малым, в результате чего произойдет переориентация доменов. Это вызовет локальные механические напряжения и назеркалено отражающем слое возникнет геометрический рельеф, воспроизводящий записанное изображение (рис. 3.7, 6). Искривление поверхности ОУТ при этом обычно не превышает нескольких десятых долей микрометра. Такой разности хода светового луча, однако, достаточно для считывания изображения.

Описанные ПВМС на основе наведенного двулучепреломления, управляемого рассеяния, геометрического рельефа называют соответственно Ферпик (Ferpic—Ferroelectric Picture), Керампик (Cerampic —Ceramic Picture), Ферикон (Fericon — Ferroelectric leonoscope).

Оптически управляемый транспарант может быть построен на материале, обладающем одновременно и фото чувствительными, и электрооптическими свойствами. Так называемое устройство ПРОМ (PROM — Pockels Readont Optical Modulator) сконструировано следующим образом. На пластину силиката висмута Bi12SiO20 (возможно использование Bi12GeO20, ZnS, ZnSe, CdS, CdSe, ZnO и других материалов, способных длительно сохранять состояние поляризации) толщиной около 100 мкм с двух сторон наносят тонкие диэлектрические слои (~3 мкм), а поверх них —прозрачные слои платины. Специальный слой фотопроводника в устройстве ПРОМ отсутствует, так как используется фотопроводимость электрооптического материала. Чувствительность Bi12Si020, в частности, приходится на спектральную область 0,4—0,5 мкм, а при λ≥0,5 мкм она резко падает. Структуру подключают к источнику постоянного напряжения (1000—2000 В) и освещают вспышкой ксеноновой лампы. Генерируемые светом в Bi12 SiO20 электроны перемещаются к границе раздела с диэлектрическим слоем, локализуются там на энергетически глубоких центрах и поляризуют пластину (сквозной ток не идет из-за наличия диэлектрических слоев). Перемещение электронов продолжается до тех пор, пока поляризационный заряд не скомпенсирует (заэкранирует) внешнее поле. При закороченных электродах в кристалле за счет поляризации возникает электрическое поле, по направлению противоположное внешнему.

Если на ПРОМ-структуру спроецировать в сине-голубой области (0,4—0,5 мкм) изображение, в светлых местах поляризационное поле исчезнет, а в неосвещенных останется неизменным. Считывание изображения осуществляют линейно поляризованным красным светом (Х> 0,6 мкм), который не вызывает изменений в кристалле, но оказывается пространственно промодулированным по фазе. Фазовая модуляция преобразуется в амплитудную, если, как обычно, структуру поместить между скрещенными поляризатором и анализатором.

Если к структуре подключить источник внешнего напряжения той же полярности, в ранее освещенных местах поляризационное поле скомпенсируется внешним, а в неосвещенных — электрическое поле будет действовать. В результате при считывании позитивное изображение превратится в негативное. Стирание информации производится равномерной засветкой в сине-голубой области спектра при U=0. Время записи — считывания составляет ~1·10-3с, память может сохраняться 1—2 ч, пространственное разрешение транспаранта составляет несколько десятков или сотен линий на миллиметр. Недостатки устройства ПРОМ — высокое питающее напряжение, низкая частота смены изображений (не более 1 кГц).

Своеобразной модификацией ПРОМ является устройство ПРИЗ (от слов «преобразователь изображения»). Его отличие состоит в том, что пластину электрооптического полупроводникового материала (например, силикат или германат висмута) вырезают не параллельно (как в устройстве ПРОМ), а перпендикулярно оптической оси, т. е. так, чтобы приложенное к структуре внешнее электрическое поле не вызывало модуляции считывающего света. Однако при неравномерном освещении транспаранта в результате миграции генерируемых светом носителей тока возникает поперечная составляющая поля, которая приводит к изменению показателя преломления, обусловленному электрооптическим эффектом. Выделение областей с максимальным градиентом освещенности оказывается очень полезным при обработке изображений, в частности при распознавании объектов. Фактически при помощи устройства ПРИЗ производится пространственное дифференцирование изображения, причем без применения специального оптического процессора (см. 3.5.2).

Еще в одной модификации рассматриваемого ОУТ электродные слои наносят непосредственно на пластину электрооптического кристалла. В этом случае возникающее после начала экспонирования изображения поляризационное поперечное поле из-за прохождения тока постепенно спадает (для силиката висмута с характерным временем около 1 с). Устройство, таким образом, позволяет выделять в изображении изменяющиеся детали, т. е. производить временное дифференцирование изображения.

Самостоятельный интерес представляют жидкокристаллические (ЖК) транспаранты с оптическим управлением. Применяются как структура ЖК-ФП, так и с непрозрачным диэлектрическим зеркалом между слоями. Несомненным достоинством таких транспарантов, как и ЭУТ на основе ЖК, являются низкие рабочие напряжения, простая и дешевая технология изготовления; недостатком—значительная инерционность (~1·10-2с). Поскольку ЖК — высокоомные материалы, то для электрического согласования в качестве фотопроводника приходится использовать также высокоомные полупроводники (ZnS, ZnSe, CdS, Se и т. п.). Использование низкоомных фотопроводников (в частности, кремния) в сочетании с ЖК (а также другими электрооптическими материалами) возможно в устройствах с фоточувствительными МДП-струк-турами.

В ОУТ могут использоваться не только электрооптические эффекты, но и термооптический (тепловой) способ записи информации, основанный на изменении свойств ЖК при его фазовом переходе под действием нагревания. В ОУТ такого типа тонкую пленку ЖК помещают между электродами из IТО, непрозрачными в инфракрасной области спектра. Если на такую структуру направить лазерный луч, энергия излучения поглотится в электродном слое и вызовет локальный нагрев ЖК. В исходно прозрачном слое ЖК нагрев, а затем быстрое охлаждение приведут к «замороженной» разупорядоченности структуры, интенсивно рассеивающей свет. Запись можно стереть нагревом и последующим охлаждением ячейки в электрическом поле, создаваемом приложенным к электродам напряжением.

Оптически управляемый транспарант может быть построен на основе материала, в котором при определенной температуре происходит переход из металлического состояния в полупроводниковое. Такими пороговыми свойствами обладают, в частности, оксиды ванадия, а среди них наиболее подходящим является диоксид ванадия VO2 с температурой фазового перехода ~70° С. Изготовление транспаранта сводится к нанесению слоя VO2 толщиной 0,1—0,2 мкм на подложку из стекла, кварца, ситала или другого подходящего материала. На слой VO2 направляют сканирующий лазерный луч или же проецируют изображение такой интенсивности, что в освещенных местах в результате поглощения света слой оксида ванадия нагревается и переходит из полупроводникового состояния в металлическое. После прекращения экспонирования изображения транспарант возвращается в исходное состояние. Для считывания информации можно использовать изменение либо коэффициента поглощения, либо показателя преломления. Энергетическая чувствительность транспаранта оказывается не очень низкой (1·10-2 Дж/см2), пространственное разрешение — несколько тысяч линий на миллиметр, время записи может быть доведено до ~1·10-8с. Используемое сокращение ОУТ рассматриваемого типа — ФТИРОС (фазово-трансформационный реверсивный отражатель света).

Возможны также другие ОУТ теплового действия, в частности с использованием термопластиков—пластических масс, способных размягчаться при нагревании и сохранять форму после охлаждения (например, полистирол, поливинилхлорид и др.). На стеклянную пластинку с проводящим прозрачным слоем диоксида олова или металла наносят слой фотопроводника (обычно поливинилкарбазол), а поверх него—слой термопластика. Далее поверхность термопластика заряжают при помощи коронного разряда, в результате чего между поверхностью транспаранта и проводящим электродом возникает разность потенциалов. При проецировании на структуру оптического изображения сопротивление фотопроводника в освещенных местах уменьшается и электрическое поле в различных местах термопластика оказывается разным. Если через электрод из SnO2 пропустить импульс тока, слой термопластика кратковременно нагреется (до точки размягчения) и в местах сильного электрического поля произойдет сжатие пленки, что надолго зафиксируется после охлаждения устройства. В результате образуется поверхностный рельеф, повторяющий записанную картину, а считывающий свет окажется промодулированным по фазе. Стирание изображения производят нагревом пленки в темноте. Возможны ОУТ, в которых используют фоточувствительность самого термопластика (фототермопластика), и тогда необходимость отдельного слоя фотопроводника отпадает. Энергетическая чувствительность устройства на термопластиках высока и сравнима с чувствительностью фотоэмульсии, пространственное разрешение составляет 1000— 4000 лин/мм.

Подпись: Рис. 3.8. Устройство матричных оптических управля¬емых транспаран-тов со сплошным фотопро-водящим слоем (а) и типа «Латрица» (б): 
1 — маскирующие электроды с окнами, 2—фоточу¬вствительный слой, 
3–электрооптический матери¬ал, 
4—поглощающий резистивный слой, 
5–моза¬ичное зеркало, 
6–фоточувствительная кремниевая интегральная микросхема

Большинство из рассмотренных ОУТ могут работать в режиме, когда интенсивность как записывающего, так и считываемого света изменяется по координатам сколь угодно плавно. Для обработки цифровой информации в виде двоичных изображений используют матричные ОУТ. Такого типа транспарант включает в себя множество регулярно расположенных ячеек «фотоприемник—электрооптический материал», действующих практически независимо друг от друга и предназначенных для выполнения операций над одним битом информации. Устройство матричного ОУТ отражательного типа поясняется рис. 3.8, а. В отличие от рассмотренных ранее структур светоизолирующий слой между фотопроводником 2 и модулирующей средой 3 выполнен в виде матрицы зеркально отражающих металлических площадок 5, разделенных резистивным слоем 4, непрозрачным и нефоточувствительным. Внешние электроды 1 выполнены в виде металлической маски с окнами, расположенными в створе с отражающими площадками на оптически разделяющем слое. Это обеспечивает независимую работу ячеек транспаранта и высокую надежность записи. Как и в схеме, показанной на рис. 3.1,6, для считывания изображения применяют полупрозрачные зеркала, поляризаторы и т. п. В качестве электрооптического материала в матричных ОУТ могут применяться кристаллы KDP, ADP, LiNbO3 и др.

Недостатком таких устройств является относительно низкое быстродействие. Чтобы его повысить, электрооптический слой наносят не поверх сплошного резистивного слоя, а на созданную на прозрачной подложке (рис. 3.8, б) интегральную матрицу фоточувствительных кремниевых схем с необходимыми усилительными элементами (транзисторами) 6. Быстродействие таких фоточувствительных ячеек может составлять 10-6 – 10-7 с.

Чтобы обеспечить оптическую память, электрооптический материал не обязательно должен обладать гистерезисными свойствами. Для этого подходит, например, сегнетоэлектрическая керамика, но при температуре выше точки Кюри. Оперативная память такого транспаранта (muna Латрииа, как его называют) обеспечивается электронной схемой фоточувствительных ячеек. Ее длительность определяется временем утечки заряда через обратносмещенный кремниевый р-п-переход (обычно до 1· 10-2 с), что в некоторых случаях вполне достаточно для систем оптической обработки информации.

Введение в оптоэлектронику


*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.