5.3. Кодирующее и декодирующее устройства (КОДЕК)

Кодер аппаратуры ИКМ-30 предназначен для нелинейного кодирования (аналого-цифрового преобразования) последовательности АИМ-сигналов, поступающих от передающей части индивидуального оборудования телефонных каналов и канала вещания, в последовательность восьмиразрядных групп двоичного кода.

Декодер, аппаратуры ИКМ-30 предназначен, для нелинейного декодирования (аналого-цифрового преобразования) последовательности групп восьмиразрядного двоичного кода в последовательность АИМ-сигналов, поступающую далее на приемную часть индивидуального оборудования телефонных каналов и канала вещания.

Технические данные

Входным сигналом кодера является последовательность биполярных АИМ-сигналов с максимальной амплитудой 1,0 В и длительностью 2,0 мкс. поступающая с индивидуального оборудования.

Выходной сигнал кодера - восьмиразрядный симметричный двоичный код, получаемый следующим образом:

  • максимальный положительный сигнал кодируется как - 11111111;
  • минимальный положительный – 10000000;
  • максимальный по величине отрицательный – 01111111;
  • минимальный по величине отрицательный – 00000000.

Все кодовые комбинации на выходе кодера претерпевают дополнительное преобразование, заключающееся в инверсии четных разрядов кода. На приеме осуществляется обратное преобразование. Указанное преобразование имеет целью уменьшение вероятности появления в передаваемом по линии ИКМ-сигнале длинных последовательностей нулевых посылок.

Частота повторения кодовых групп - 256 кГц.

Входным сигналом декодера, является вышеуказанный восьмиразрядный двоичный код.

Выходной сигнал декодера - последовательность АИМ-сигналов с максимальной амплитудой 2,0 В.

С целью увеличения отношения сигнал/шум квантования в диапазоне малых входных сигналов в кодере осуществляется нелинейное кодирование, которое эквивалентно применению компрессированию входного сигнала на передающей стороне и экспандирования на приемной.

Закон компандирования – логарифмический, А-87,6

; ;

; .

где ; .

А=87,6 – параметр компрессирования;

- входной кодируемый сигнал;

- его максимальное амплитудное значение;

N – номер шага квантования, считая от середины характеристики;

NМАКС – число шагов в каждой половине характеристики;

Шаг квантования – интервал между двумя дискретными уровнями квантования.

Указанный закон аппроксимирован 13-сегментной характеристикой с отношением наклонов характеристики на соседних сегментах равным двум.

Полная характеристика содержит 256 шагов квантования. Отношение величин шагов на соседних сегментах равно двум. В пределах сегмента шаг является равномерным. На рисунке 16 приведена характеристика кодирующего устройства (участок, соответствующий положительным сигналам). Указанная нелинейная характеристика квантования обеспечивает по сравнению с равномерной характеристикой с таким же числом шагов расширение динамического диапазона на величину

Рабочая точка кодера находится на границе между шагами квантования.

В процессе кодирования кодер определяет шаг, в пределах которого находится данный входной сигнал, и выдает на выходе номер этого шага в виде 8-разрядного двоичного кода.

На приемной стороне декодер выполняет обратную операцию в соответствии с поступившим кодом номера шага квантования восстанавливает амплитуду АИМ - сигнала.

Каждому из 256 интервалов амплитуд (шагов), подлежащих кодированию на передающей стороне, должен соответствовать на приемной стороне такой же интервал амплитуд на шкале выходных напряжений, подлежащих воспроизведению. Всевозможные амплитуды сигнала, заключенные в пределах одного интервала, должны воспроизводится одним дискретным,уровнем декодера. Наилучшее воспроизведение обеспечивает уровень декодера, находящийся на середине этого-интервала. При таком размещении всех 256 уровней декодера погрешность воспроизведения любой амплитуды внутри интервала не превосходит половины шага квантования на сегменте. Из этого следует различие в шкалах уровней кодера и декодера, т.е. уровни декодера должны быть смещены на 1/2 шага на сегменте по отношению к уровням кодера.

В отсутствии посегментного смещения уровней декодера, т.е. в случае, когда уровни кодера и декодера совпадают, на характеристике передачи вход кодера - выход декодера появляются разрывы на концах сегментов, а коэффициент передачи становится меньше единицы. При этом входные амплитуды будут воспроизводиться декодером с ошибкой большей, чем половина шага квантования.

Рисунок 16. Характеристика компандирования

Рисунок 16. Характеристика компандирования.

Структурная схема кодера

Кодер аппаратуры ИКМ-30 по принципу действия представляет собой аналого-цифровой преобразователь последовательного взвешивания с обратной связью.

Структурная схема кодера приведена на рисунке 17. Она содержит следующие функциональные части:

  • устройство выборки и хранения (вторичного опробования), предназначенное для получения выборки напряжения входного АИМ- сигнала и запоминания его на время, необходимое для осуществления процесса кодирования;
  • усилитель ввода, преобразующий получающий с выхода устройства выборки и хранения сигнал напряжения в пропорциональный ему токовый сигнал (Is);
  • два блока эталонов кодека (БЭК) предназначенных для выработки взвешенных сумм эталонных токов (I), с помощью которых производится взвешивание кодируемого сигнала;
  • компаратор, определявший знак результата вычитания тока суммы
  • эталонов (I) из тока сигнала выборки (Is) на каждом из этапов кодирования;
  • регистр памяти, в котором производится запоминание результатов каждого из восьми взвешиваний в цикле кодирования;
  • логику управления сумматорами эталонов токов, определяемую порядок включения эталонов в процессе кодирования, а также подключающую соответствующий сумматор в зависимости от полярности кодируемого сигнала;
  • узел формирования выходного сигнала кодера, предназначенный для формирования последовательного кода на выходе кодера из параллельного кода регистра памяти;
  • узел управления работой кодера, вырабатывающий распределенные во времени сигналы, определяющие последовательность работы всех указанных выше функциональных частей кодера.

Рисунок 17. Структурная схема кодера

Рисунок 17. Структурная схема кодера.

Последовательность работы кодера

Процесс кодирования заключается в определении на характеристике кодирующего устройства шага квантования, в пределах которого находятся входной преобразуемый сигнал, и формирований двоичного кода, выражающего номер этого шага на характеристике. Кодирование по методу последовательного взвешивания можно рассматривать как последовательный поиск шага путем подбора суммы эталонов различных весов для достижения наиболее точного уравновешивания кодируемого сигнала.При этом результат каждого включения эталонов оценивается устройством сравнения (компаратором), последовательность решений которого образует код преобразуемого сигнала.

Кодируемый сигнал представлен неизменным по величине в течение цикла кодирования током Is, который пропорционален отсчету мгновенного значения напряжения на огибающей входного АИМ – сигнала. Отсчеты (выборки) мгновенных значений напряжения входного сигнала берутся с частотой временной дискретизации 256 кГц (8 кГц для телефонных каналов, 32 кГц для канала вещания). Для формирования токового сигнала Is входной АИМ - сигнал поступает на устройствовыборки и хранения, производящее фиксацию мгновенного значения входного сигнала путем кратковременного заряда накопительной емкости до напряжения поступающего АИМ - сигнала и последующего хранения напряжения на ней. С выхода устройства выборки и хранения усиленный соответствующим образом сигнал выборки поступает на вход усилителя ввода. Усилитель ввода представляет собой управляемый напряжением генератор тока, вырабатывающий токи Is и –Is, которые затем подаются в точки суммирования А и В.

В одну из точек суммирования в зависимости от полярности входного сигнала на последующих этапах процесса кодирования подаются суммы эталонных токов I, вычитаемые из тока, кодируемого сигнала Is. Разность токов Is-I в общей точке суммирования и ток -Is в другой точке создадут на выходных сопротивлениях БЭК падения напряжения Us-Uи Us соответственно. Компаратор, входы которого подключены к точкам суммирования, производит операцию вычитания:

(Us- U)-(-Us)=2Us-U

и вырабатывает сигнал “0”, если 2Us>U и сигнал “I”, если 2Us<U. Решение компаратора записывается в соответствующий триггер регистра памяти, включенного в цепь обратной связи кодера.

В рассматриваемой процедуре поиска необходимой суммы эталонов, уравновешивающих входной сигнал, переход к следующему эталону производится на основании всех предыдущих решений компаратора, хранящихся в регистре памяти. На выходах 8 триггеров регистра памяти по мере записи в него решений компаратора формируется 8-резрядный параллельный код Q1….Q8 преобразуемого сигнала.

Первый разряд Q1 кода регистра памяти содержит информацию о полярности входного сигнала. Определение полярности производится без подачи в точки суммирования эталонных токов (I). Вторым, третьим и четвертым разрядами кода кодируются номер сегмента характеристики, которому соответствует входной сигнал. В связи с этим во время поиска сегмента посредством трех взвешиваний среди эталонных токов с весами 210, 29, 28, 27, 26, 25, 24 и 0 условных единиц отыскивается ближайший ко входному сигналу меньше его по величине (условная единица - ток соответствующий наименьшему шагу характеристики кодера). Указанные эталоны соответствуют граничным точкам сегментов. Поиск начинается со среднего по номеру сегмента - с входным сигналом сравнивается эталон 27 у.е. В соответствии с решением компаратора“0” или “1” производится переход к эталону 29 у.е. либо к эталону 25 у.е,; далее - обусловленный следующим решением компаратора переход к одному из эталонов – 210, 28 , 26, 24 у.е. и т.д.

Разрядами с 5-го по 8-й кодируется номер одного из 16 шагов на сегменте, в пределах которого находится входной сигнал. Определение номера шага на сегменте ведется начиная со старшего по весу для данного сегмента эталона к младшему.

Включение эталонных токов производится с помощью логики управления БЭК. Входными сигналами логики являются 8 разрядов кода (Q1….. Q8) поступающие с выходов триггеров регистра памяти. Логика преобразует 7 разрядов (02….. Q8) этого линейного кода в II разрядов линейного кода для управления БЭК. От состояния триггера первого разряда (Q1) зависит подключение БЭК соответствующей полярности для формирования биполярной характеристики квантования.

На каждое из 8 взвешиваний отводится время равное полупериоду частоты 2048 кГц.

Выходной сигнал кодера формируется последовательным считыванием кода (Q1…… Q8) с выходов триггеров регистра памяти.

Четные разряды кода считываются с инверсных выходов триггеров.

В кодирующем устройстве предусмотрена автоматическая коррекция "нуля" кодера, которая осуществляется во время 0 и 16 канальных интервалов. В эти моменты на входе кодера отсутствует АИМ-сигнал. В схеме выборки и хранения фиксируется напряжение выборки, которое принимается за “нуль”. Далее, компаратор определяет знак смещения на своих входах по отношению к "нулевому" входному сигналу. Смещение обусловлено разбросом и дрейфом параметров элементов устройства выборки и хранения, схемы ввода и компаратора. На основании решения компаратора в узле управления работой кодера определяется сигнал коррекции соответствующего знака и корректор нуля производит изменение напряжения на накопительной емкости. Напряжение на накопительной емкости определяет, в свою очередь, начальный ток схемы ввода, причем, изменение начального тока схемы ввода уменьшает смещение на входах компаратора.

Структурная схема декодера

Структурная схема декодера приведена на рисунке 18 и включает в себя следующие узлы:

  • преобразователь последовательного кода в параллельный, осуществляющий преобразование каждой 8-разрядной кодовой группы, поступающей последовательно во времени на вход декодера, в параллельную;
  • регистр памяти, запоминающий результат преобразования последовательного кода в параллельный и формирующий длительность выходного сигнала;
  • два блока эталонов кодека, формирующих сумму эталонных токов, каждая из которых соответствует определенному шагу квантования характеристики кодера; БЭК декодера аналогичны по структуре БЭК кодера, но количество источников эталонных токов в них на один больше, чем в кодере;
  • логику управления БЭК, преобразующую восьмиразрядную кодовую группу, хранящуюся в регистре памяти, в двенадцатиразрядную группу, управляющую работой БЭК;
  • дифференциальный усилитель, объединяющий однополярные последовательности сумм эталонных токов, поступающие с выходов БЭК в биполярную последовательность выходных АИМ-сигналов;
  • элемент задержки, предназначенный для коррекции временного положения группового ИКМ-сигнала относительно разрядных последовательностей.

Преобразование кодовой группы в АИМ-сигнал (декодирование) происходит следующим образом.

Символы кодовой группы последовательного кода записываются в регистр преобразователя последовательного кода в параллельный. С поступлением на вход последнего символа кодовой группы на выходе преобразователя образуется полная кодовая группа параллельного кода, которая переписывается в регистр памяти. После перезаписи кодовой группы начинается формирование следующей кодовой группы параллельного кода, а регистр памяти в течении промежутка времени равного длительности выходного АИМ-импульса, декодера, хранит предыдущую кодовую группу.

Логика управления БЭК в соответствие с информацией о полярности и амплитуда закодированного данной группой сигнала включает в одном из БЭК необходимые для формирования выходного уровня эталонные точки.

Выходные токи БЭК создают на сопротивлениях нагрузок напряжения которые подаются на входы дифференциального усилителя. На выходе дифференциального усилителя воспроизводятся АИМ - импульсы, с точностью до ошибки кантования воспроизводящие закодированный сигнал. Далее АИМ - последовательность с выхода декодера поступает на приемную часть индивидуального преобразования.

Рисунок 18. Структурная схема декодера.

Рисунок 18. Структурная схема декодера.

Устройство и работа ИКМ-30


*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.