8.4. Разделение сигнала по форме

При разделении сигналов по форме базисные функции должны быть линейно независимыми и ортогональными. При этом передаваемая информация заключается в амплитуде базисных функций. В случае разделения по форме канальный сигнал имеет вид:

, (8.15)

где - период канального сигнала, - отсчеты первичного сигнала.

Выражение справедливо в случае, когда информация заключена в амплитуде сигнала. В качестве базиса используются функции, удобные с точки зрения технической реализации. В частности полиномы Лежандра, Матье и др. При использовании полиномов Лежандра отдельные базисные функции равны:

(8.16)

Условие ортогональности в этом случае имеет вид:

(8.17)

Т.о., средняя мощность каждого ортогонального колебания равна (). Для того чтобы выровнять мощность канальных сигналов на передающей стороне каждую базисную функцию умножают на .

При использовании нечетных полиномов в сигнале появляются скачки, для передачи которых потребуется широкая полоса радиоканала (рисунок 8.3).

Рисунок 8.3

Для устранения этого недостатка в передаваемом сигнале у нечетных полиномов через период изменяют полярность (рисунок 8.4).

Рисунок 8.4

Рассмотрим структурную схему передающей части системы с ортогональными сигналами (рисунок 8.5).

Рисунок 8.5

где СМУ – суммарно-масштабирующий усилитель, ГПФ – генератор полиномиальных функций, ГТЧ – генератор тактовой частоты, ГНК – генератор несущего колебания, К – ключ, С – синхронизатор.

Первичный сигнал - непрерывная функция времени. ГТЧ формирует кратковременный импульс с частотой . Ключ К хранит значение отсчетов за весь период, а синхронизатор формирует синхросигнал.

Тогда групповой будет сигнал представлен в следующем виде:

, , (8.18)

Для разделения канальных сигналов используют свойство их ортогональности. Эта операция сводится к вычислению скалярного произведения группового сигнала на базисную функцию выделяемого канала

(8.19)

Структурная схема приемной части системы приведена на рисунке 8.6.

Рисунок 8.6

Ортогональные полиномы Лежандра, Чебышева и т.д. являются непрерывными аналоговыми сигналами и, следовательно, устройствам их генерирования и обработки свойственны недостатки присущие всем аналоговым устройствам:

  • невозможность унификации и стандартизации большинства устройств;
  • высокие требования к температурной стабильности;
  • сложность технической реализации генераторов полиномиальных функций.

Поэтому в настоящее время в качестве канальных сигналов используются различные типы цифровых сигналов, в частности ансамбль функций Уолша.

Радиосистемы передачи информации


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.