3.1. Дискретно-аналоговое представление регулярными выборками

При дискретно-аналоговом представлении сообщение на интервале времени T описывается вектором

, (3.1)

где - координаты.

Если шкала каждой координаты непрерывная, то это представление называется дискретно-аналоговым, а если шкала квантованная, то представление дискретно-квантованное, т.е. цифровое.

Дискретно-аналоговое представление сообщений может быть реализовано различными способами в зависимости от выбора системы координат. Наибольшее применение в РСПИ получили представления, у которых в качестве координат сообщения используется текущее значение сигнала в фиксированные моменты времени.

(3.2)

Координаты называются выборками или отсчетами, а моменты времени - точками опроса.

При представлении регулярными выборками расстояние между соседними точками опроса одинаково и равно .

, (3.3)

где - период опроса, - частота опроса.

Частота опроса является важнейшим параметром, который надо выбирать при представлении сообщения регулярными выборками.

Процесс формирования выборок в этом случае изображен на рисунке 3.1:

Рисунок 3.1

Выбор частоты опроса зависит от способа восстановления исходного сообщения на приемном конце. Восстановление непрерывной функции по её выборкам называется интерполяцией.

Рассмотрим случай, когда потребителю необходимо восстановить на приёмной стороне функцию. Реально при восстановлении функции может быть получена только её оценка . Для доказательства этого утверждения представим интерполяционную обработку в следующем виде:

, (3.4)

где - интерполирующая (восстанавливающая, синтезирующая) функция. Функция

, (3.5)

т.е. есть функция с началом отсчета в точке мер выборки первичного сигнала. Суммирование в выражении (3.4) ведется по всем выборкам, участвующим в обработке. Определение вида функции составляет сущность задачи выбора способа интерполяционной обработки.

На точность функции восстановления функции влияют следующие факторы:

  • шумы интерполяции;
  • шумы радиолинии;
  • погрешности системы.

В дальнейшем будем учитывать только ошибку за счет интерполяции. Т.е. выборки будут считаться точными, а шумы отсутствующими. Тогда выражение для оценки первичного сигнала будет иметь следующий вид:

. (3.6)

Ошибка интерполяционной обработки в этом случае равна:

. (3.7)

При этом оценка должна быть получена на некотором интервале интерполяции с учетом выборок, расположенных на конечном интервале обработки . Интервал обработки должен последовательно перемещаться в пределах интервала наблюдения (рисунок 3.2).

Рисунок 3.2

Таким образом, функция должна быть восстановлена для всех значений времени, лежащих внутри интервала интерполяции , путем использования выборок в моменты времени .Это возможно потому, что существует корреляционная зависимость между значением первичного сигнала , моментами времени и . Интерполяция белого шума невозможна, т.к. его корреляционная функция есть дельта – функция.

Теоретически необходимо учитывать все отсчеты на интервале наблюдения , т.е. полагать = . Но при этом результаты интерполяции могут быть получены спустя время , и для реализации требуется устройство с большой памятью. С удалением точки опроса от интервала интерполяции уменьшаются корреляционные связи и их учет дает малый вклад в ошибку интерполяции. Поэтому имеют смысл учитывать только те отсчеты, выборки которых коррелированны с функцией на интервале интерполяции , с коэффициентами корреляции К(τ) = 0.05 – 0.2. Конкретные значения К(τ) определяются требованиями к точности интерполяции.

Радиосистемы передачи информации


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.