Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

4. Стандарты и терминология синхронных сетей. Синхронная цифровая иерархия SDH (СЦИ)

Синхронная цифровая иерархия SDH (СЦИ)

4. Стандарты и терминология синхронных сетей

4.1. Стандарты цифровых синхронных сетей

4.1.1. Краткий обзор стандартов синхронных цифровых сетей

4.1.2. Систематизация логических функций оборудования SDH

4.2. Терминология цифровых сетей

4.2.1. Истоки появления новой терминологии

4.2.2. Некоторые предложения по выбору терминологии в технологиях PDH и SDH



4.1. Стандарты цифровых синхронных сетей

В развитии современных сетевых технологий стандарты играют очень большую, если не сказать определяющую роль. Глобальные цифровые сети, в которых эти технологии используются, покрывают большие пространства и пересекают не одну государственную границу. Для их функционирования требуется высокая степень стандартизации оборудования.

Стандарты, описывающие принципы организации и функционирования синхронных цифровых сетей связи, первоначально разрабатывались в основном двумя организациями: Американским национальным институтом стандартов (Комитет Т1Х1) и Международным Консультативным Комитетом по Телеграфии и Телефонии. Последний представил свои результаты в 1988 году в виде серии рекомендаций (де-факто стандартов) G.700-G.7xx, рассмотренных на Пленарной Ассамблее Международного союза электросвязи в 1988 году и опубликованных в 1989 году в так называемой Синей книге - CCITT Blue Book. В настоящее время разработкой этих и сопутствующих стандартов занимаются несколько организаций:

-         Американский национальный институт стандартов - ANSI;

-         Объединение Европейских администраций почт и связи - СЕРТ;

-         Международный консультативный комитет по радио и телевидению - CCIR (МККРТ);

-         Международный консультативный комитет по телеграфии и телефонии - CCITT (MKKTT), до 28 февраля 1993 года;

-         Международный союз электросвязи - ITU (МСЭ), куда входили комитеты CCIR и CCITT, имеет с 1 марта 1993 года сектор стандартизации в области электросвязи ITU-T (до 28 февраля 1993 года интересующие нас рекомендации выходили под эгидой CCITT, а с 1 марта 1993 года стали выходить как рекомендации ITU-T);

-         Сектор по стандартизации Международного союза электросвязи - ITU-T (МСЭ-Т), начиная с 1 марта 1993 года;

-         Европейский институт стандартов в области связи - ETSI;

-         Международная электротехническая комиссия - IEC (МЭК);

-         Международная организация по стандартизации - ISO.

Кроме этого корпоративные стандарты разрабатываются также рядом компаний, например, Bellcore, AT&T и другими.

Первая попытка разработки стандартов синхронных оптических сетей относится к 1984 году. Первый стандарт таких сетей "Syntran" базировался на скорости 45 Мбит/с (канал ТЗ), в это же время AT&T предложила использовать в качестве стандартной скорость 150 Мбит/с. В 1985 году Bellcore внесла в комитет Т1Х1 предложение на проработку стандарта синхронной оптической сети SONET. В 1986 году стандартом SONET заинтересовался комитет CCITT. Одна из его исследовательских групп (SG XVIII) и занялась разработкой стандарта SDH. Первоначально порождающие скорости SONET и SDH были разными и нецелократными (50 и 155 Мбит/с). В феврале 1988 года было принято согласованное решение по начальной скорости оптической несущей ОС (ОС-1 = 51.84 Мбит/с), при которой скорость синхронного транспортного модуля STM-1 равная 155.52 Мбит/с оказалась равной утроенной скорости ОС-1 или скорости ОС-3. Это решение привело к окончательной доработке технологии SDH, оформленной в виде трех рекомендаций G.707[16], G.708[17] и G.709[18], принятых в 1988 году и опубликованных в 1989 году в "Синей книге".

Рекомендации CCITT, получив всеобщее признание, стали фактически международными стандартами - отправным пунктом для разработчиков аппаратуры SDH. В 1990-1997 годах комитет CCITT, а затем его преемник - сектор по стандартизации ITU-T, продолжили разработку новых стандартов по SDH, в том числе и подвергая ревизии старые стандарты. В настоящее время группа стандартов, прямо или косвенно связанных с SDH, уже насчитывает несколько десятков. Есть смысл хотя бы перечислить их, тем более, что выше были описаны только основные из них.



4.1.1. Краткий обзор стандартов синхронных цифровых сетей

В этом обзоре мы ограничимся только рекомендациями ITU (МСЭ) серии G, но приведем не только стандарты по технологии SDH, но и некоторые сопутствующие стандарты по технологии PDH и волоконно-оптическим кабелям (ВОК).

Группа рекомендаций: G.650 [141], G.652 [142], G.653 [143], G.654 [144], G.655 [145] - описывает характеристики одномодовых ВОК, которые широко используются в сетях SDH. Характеристики отечественных оптических кабелей связи можно найти в [33], где приведены также ссылки на ТУ на отчественные оптические кабели.

Группа рекомендаций: G.661 [146], G.662 [147], G.663 [148], G.681 [149] - описывает характеристики таких оптических компонентов и подсистем линейных сетей SDH как оптические усилители.

Основная группа рекомендаций серии G.70x: G.702 [13], G.703 [14], G.707 [16], G.708 [17], G.709 [18], описывающая стандартные скорости иерархий PDH (G.702) и соответствующие им интерфейсы (G.703), а также стандартные скорости SDH иерархии (G.707), сетевой интерфейс и структуру мультиплексирования (G.708, G.709) - была достаточно подробно рассмотрена выше. Нужно иметь ввиду только, что самая последняя версия рекомендации G.707 [150] 1996 года заменяет сразу три рекомендации G.707, G.708 и G.709 версии 1993 года.

Рекомендация G.773 [89], описывающая стек протоколов для интерфейса Q, также подробно освещена в тексте выше.

Новая группа рекомендаций: G.774 [19], G.774.1 [151], G.774.2 [152], G.774.3 [153], G.774.4 [154], G.774.5 [155], G.774.7 [156] - посвящена информационной модели управления сетью SDH и ее элементами. Она описывает классы объектов сети управления TMN, требуемые для управления элементами и подсистемами сети SDH, а также для мониторинга их рабочих характеристик.

Группа рекомендаций: G.780 [157], G.781 [20], G.782 [21], G.783 [22], G.785 [158] - описывающих терминологию и оборудование сетей SDH, его типы, характеристики и выполняемые функции, была частично описана выше. Однако формализация логических функций, выполняемых оборудованием SDH, изложенная в рекомендации G.782, описана несколько более подробно ниже в п. 4.1.2. данного параграфа.

Рекомендация G.784 [23], посвященная системе управления сетью и оборудованием SDH, достаточно подробно описана в тексте выше.

Рекомендация G.803 [159] посвящена формализованному рассмотрению транспортных функций архитектуры сети SDH, основных функций защиты и самовосстановления сетей SDH, а также проектированию топологии сети синхронизации и взаимодействия сетей PDH и SDH. Рекомендация считается одной из основополагающих при рассмотрении проблем синхронизации SDH сетей. В ней вводится классификация цифровых сетей по степени поддержания синхронности распространения цифровой последовательности. Эта классификация основана на понятии "проскальзывание" (или "слип" (slip)). Его суть в том, что несинхронность работы локальных хронирующих источников, синхронизируемых различным способом (или вообще работающих автономно), приводит к тому, что частоты входных цифровых последовательностей и тактовой синхронизации в местах стыка границ участков, обслуживаемых различными хронирующими источниками, отличаются (хотя и на достаточно малую величину) друг от друга. Это приводит к появлению небольшой разностной скорости, или относительному движению, или проскальзыванию одной последовательности относительно другой. Накапливаясь за определенный промежуток времени, оно (движение) приводит к временному срыву синхронизации. Определенное влияние на этот процесс оказывает как дрожание фазы (jitter), так и медленный дрейф фазы (wander) указанных последовательностей.

Все сети, согласно рекомендации G.803, делятся на:

-         синхронные, в которых (в идеале) отсутствует относительное проскальзывание (или "слипы") цифровых последовательностей на входах каналов доступа мультиплексоров PDH и SDH,

-         псевдосинхронные, в которых регламентируется низкий уровень проскальзывания (например, не больше, чем 1 слип/70 дней [160]),

-         плезиохронные, в которых допускается средний уровень проскальзывания (например, не больше, чем 1 слип/17 часов [160]),

-         асинхронные, в которых допускается высокий уровень проскальзывания (например, не больше, чем 1 слип/7 сек [160]).

Указанная классификация принята за основу при создании Руководящих технических материалов (РТМ) [160], в которых рассматриваются вопросы формирования сети синхронизации для Взаимоувязанной сети связи (ВСС) РФ [137]. В частности, предлагается разбиение всей ВСС на 4 региона, в которых предполагается использовать описанную выше технологию принудительной синхронизации, использующей иерархическую структуру хронирующих источников в сочетании с парами "ведущий/ведомый" источников. При этом предполагается, что сеть ВСС РФ по классу синхронизации должна быть не хуже плезиохронной. Нужно заметить, что работы в этом направлении находятся пока на этапе становления, а ситуация в регионах такова, что цифровая сеть может классифицироваться в целом больше как асинхронная.Рекомендация G.803, в части требований к вторичным хронирующим источникам для оборудования SDH, поддержана новой рекомендацией G.813 [163].

В рекомендации G.804 [161] описан метод передачи ATM ячеек по существующим сетям PDH. В частности рассмотрен метод отображения ячеек на структуру кадров PDH для всех скоростей передачи PDH трибов европейской и американской иерархий и скорости 97.728 Мбит/с японской иерархии в соответствии с рекомендацией G.702 [13]. Метод отображения ячеек на структуру полезной нагрузки фреймов STM технологии SDH рассмотрен в рекомендации G.709 версии 1993 года [18] и частично освещен в [162].

Рекомендация G.825 [164] описывает схемы управления дрожанием фазы (jitter) и дрейфом фазы (wander) цифровых последовательностей в сетях SDH. Для измерения этих характеристик, а также других характеристик SDH оборудования, существует ряд приборов ведущих фирм, рассмотрение которых выходит за рамки данной книги.

Рекомендация G.831 [123] дополняет рекомендацию G.803 в части описания требований к административному управлению разбитой на уровни сети передачи. Она определяет процесс управления маршрутом (трактом) при использовании схем защиты, в частности те его аспекты, которые требуют поддержки при пересечении границ административных доменов (см. п.3.4.1.2).

В рекомендации G.832 [124] рассмотрена возможность транспортировки элементов структуры мультиплексирования SDH - TU-12, VC-3, TUG-2 и TUG-3, через сети PDH путем их размещения в поле полезной нагрузки фреймов, соответствующих кадрам стандартных каналов ЕЗ (34 Мбит/с), DS3 (45 Мбит/с), DSJ4 (98 Мбит/с) и Е4 (140 Мбит/с) европейской, американской и японской PDH иерархий (см. п.1.5.1.)- Эти решения позволяют гибко сочетать сегменты PDH и SDH сетей при создании единой синхронной сети связи.

В рекомендации G.841 [125] рассмотрены типы и характеристики самовосстанавливающихся топологий архитектуры сетей SDH (см. п.2.5.).

В новой рекомендации G.861 [126] рассмотрены вопросы интеграции спутникового, радиорелейного и наземного (кабельного) сегментов транспортных сетей SDH.

В рекомендациях G.957 [24] и G.958 [25] рассмотрены оптические интерфейсы оборудования и систем SDH (G.957), а также цифровые линейные системы SDH (G.958). В рекомендации G.957 представляет интерес широко применяемая классификация оптических интерфейсов, основанная на вариантах практического использования ВОК внутри станции или для стандартных короткой или длинной межстанционных регенераторных секций (см. п.2.6.3).



4.1.2. Систематизация логических функций оборудования SDH

Оборудование сетей SDH, рассмотренное выше, - мультиплексоры, кросс-коммутаторы, регенераторы и функциональные блоки, используемые в них, например, трибные интерфейсные блоки, блоки коммутации, управления, питания и т. д., выполняли определенные функции обработки цифрового потока или поддержания работоспособности системы в целом. На определенном этапе развития сетей SDH, главным образом в связи с формализацией задач управления такими сетями, появилась необходимость определить набор логических функций, выполняемых оборудованием SDH и провести их систематизацию. Это было сделано в рекомендации G.782 [21], где была приведена схема мультиплексирования (рис.4-1), составленная из обобщенных логических блоков, выполняющих определенную логическую функцию. Эта рекомендация была одобрена в июле 1990 года [3], затем подверглась существенной доработке в январе 1994 года [21] и была окончательно опубликована в феврале 1995 года.

Сокращенные обозначения функций, используемые на рисунке, расшифрованы ниже.

HCS        контроль соединений на уровне виртуального контейнера верхнего уровня

НОА        сборка виртуального контейнера верхнего уровня

HOI          интерфейс сборки виртуального контейнера верхнего уровня

НРА        адаптация к маршруту виртуального контейнера верхнего уровня

НРС        соединение нескольких виртуальных контейнеров верхнего уровня

НРОМ     мониторинг РОН виртуального контейнера верхнего уровня

НРТ         начало/окончание маршрута виртуального контейнера верхнего уровня

HUG        генерация незагруженного виртуального контейнера верхнего уровня

LCS         контроль соединений на уровне виртуального контейнера нижнего уровня

LOI           интерфейс сборки виртуального контейнера нижнего уровня

LPA         адаптация к маршруту виртуального контейнера нижнего уровня                                                

LPC         соединение нескольких виртуальных контейнеров нижнего уровня

LPOM     мониторинг РОН виртуального контейнера нижнего уровня

LPT         начало/окончание маршрута виртуального контейнера нижнего уровня

LUG         генерация незагруженного виртуального контейнера нижнего уровня

MCF        функция передачи сообщения

MSA        адаптация на уровне мультиплексной секции

MSP        защита мультиплексной секции

MST        начало/окончание мультиплексной секции

N              опорная точка канала DCC для регенераторной секции

OHA        функция доступа к заголовку SOH

P              опорная точка канала DCC для мультиплексной секции

PPI          физический интерфейс сигнала PDH

RST         начало/окончание регенераторной секции

S              опорная точка схемы представления системы административного управления

SEMF     функция управления синхронным оборудованием

SETPI     физический интерфейс хронирующего источника синхронного оборудования

SETS      хронирующий источник синхронного оборудования

SPI          физический интерфейс сигнала SDH

T              опорная точка источника синхронизации

TTF          функция окончания транспорта виртуального контейнера

U              опорная точка доступа к заголовку SОН

Y              опорная точка формирования статуса синхронизации

Замечание: SPI при этом имеет три опции: электрическую или оптическую внуЧри станции и оптическую между станциями.

Указанные обобщенные логические блоки в последнее время широко используются в руководствах по аппаратуре SDH различных компаний.



4.2. Терминология цифровых сетей

Стремительное развитие компьютерных, информационных и сетевых технологий в мире за последнее десятилетие привело к появлению большого числа новых терминов, циркулирующих в среде специалистов в виде особого жаргона, основанного в массе своей на использовании русских калек с английских терминов. Отечественные институты стандартизации в силу ряда известных обстоятельств оказалась неподготовленной к тому, чтобы переварить нахлынувший поток терминов и предложить их отечественные эквиваленты, узаконенные соответствующими стандартами.

В этой связи специалисты по сетевым технологиям, сами занялись наведением порядка в терминологии, используя единственно возможный в такой ситуации подход с позиции здравого смысла и использования статистики применения тех или иных терминов.

Альтернативная терминология отечественных специалистов по электросвязи, зародившаяся еще до широкого развития компьютерных сетевых технологий [166], продолжала существовать в русских переводах стандартов CCITT и ITU-T и была отражена в РТМ [12].



4.2.1. Истоки появления новой терминологии

Традиционные телефонные (проводные и беспроводные) сети связи, использующие аналоговые методы передачи, уже давно пережили свой столетний юбилей и сформировали свою устойчивую терминологию. Традиционные ЭВМ общего назначения недавно отметили свой пятидесятилетний юбилей и их терминология в основе своей также устоялась.

Системы цифровой телефонии и компьютерные сети, напротив, начали развиваться только с начала 60-х годов, когда ЭВМ уже вышли на рубеж третьего поколения. Наиболее важные моменты этого развития, как мне кажется, следующие:

1962          - начало эксплуатации компанией Bell System первой коммерческой системы цифровой телефонии с каналами DS0 (64 кбит/с), мультиплексируемыми в канал Т1 (1.544 Мбит/с). Она положила начало созданию PDH иерархии;

1963          - появление ЭВМ 3-го поколения - IBM System-360 с байт-ориентированной структурой данных и "каналом" для приема/передачи и мультиплексирования низкоскоростных потоков данных, упрощающим схему организации сетей ЭВМ - послужило мощным стимулом и основой для развития первых компьютерных сетей;

1970-72    - появление ЕС-ЭВМ (отечественного аналога IBM System-360) и публикация отечественных стандартов на аппаратуру оконечного оборудования данных ООД, аппаратуру окончания канала данных АКД и систем передачи данных СПД - послужило стимулом и основой для создания отечественных компьютерных сетей;

1975          - разработка системной сетевой архитектуры - SNA (IBM), решившей ряд ключевых вопросов организации интерфейсов доступа в сеть и создания многомашинных сетевых комплексов - первая попытка стандартизации компьютерных сетевых решений;

1981          - начало систематических работ по локальным сетям на основе ПК;

1983          - разработка базовой модели взаимодействия открытых систем - OSI (ВОС), открывшей возможности стандартизации и использования сетевого оборудования различных производителей в одной сети;

1988          - публикация базовых стандартов CCITT на технологию синхронной цифровой иерархии - SDH, широко используемую в настоящее время для создания региональных, межрегиональных и глобальных телекоммуникационных сетей.

Этот перечень показывает, что развитие компьютерных сетей и цифровых сетей связи, начиная с 1962 г., происходит практически параллельно, причем так, что отечественная терминология в обоих случаях (в части передачи данных) остается достаточно единообразной (с приматом терминологии сетей связи) вплоть до 1986 года, в основном благодаря усилиям Госстандарта.

В то же время компьютерная техника и технология развивались существенно быстрее, чем технологии цифровых сетей связи, где методы импульсно-кодовой модуляции и плезиохронной цифровой иерархии были господствующими. В компьютерной технике не только происходила смена поколений, но и появлялись новые классы ЭВМ - мини-, микро-, супер-ЭВМ, мультипроцессорные и многомашинные комплексы ЭВМ. Можно с уверенностью сказать, что развитие компьютерной техники, ее внутренней архитектуры и технологии мультипроцессорной обработки явилось источником практически всех модельных решений, использованных позднее при развитии новых сетевых технологий. То же можно сказать и о развитии терминологии. В области компьютерной техники и технологии она охватывала существенно больший круг терминов, чем в технике цифровой связи.

Компьютерные сети в начале своего развития были в основном локальными и применялись практически исключительно для передачи данных. В результате общая терминология компьютерных сетей и сетевого оборудования мало отличалась от собственно компьютерной.

Сети цифровой связи, будучи в начале своего развития в основном глобальными телефонными сетями, использовались практически исключительно для передачи речи. В результате их терминология тяготела к традиционной терминологии аналоговых сетей связи и существенно отличалась от компьютерной. Например, использовались термины стык вместо интерфейс, октет вместо байт, цикл вместо кадр или фрейм, посылка вместо блок данных, уплотнение канала и группобразование вместо мультиплексирование и так далее.

Если бы два типа сетей развивались параллельно и не пересекались, то существование двух отличных друг от друга групп терминов, имеющих одинаковую этимологию, как-то могло бы быть оправдано. Однако необходимость передавать данные на большие расстояния привела к использованию уже существовавших телефонных сетей и созданию наложеных сетей, использующих технологии пакетной коммутации - Х.25, ретрансляции кадров - Frame Relay, режима асинхронной передачи - ATM. Это позволило связывать локальные сети в единую глобальную сеть, формировать виртуальные сети и их сегменты, использовать компьютер в качестве терминального или транзитного узла сети путем простой установки интерфейсной карты в слот и связывать пользователей (абонентов сети) путем простого изменения адреса в маршрутизаторе. В результате произошло взаимопроникновение обеих типов сетей.

В этой ситуации различие терминологий стало объективным тормозом становления новых сетевых технологий, причем не "у них", разрабатывающих эти технологии, а у нас, в России, лишенной в эти годы не только достаточного количества ПК, для организации ЛВС, но и (что более важно) отечественной литературы по цифровым сетям. У нас, где один термин, например, frame в зависимости от технологии переводится специалистами то как цикл, то как кадр, то как посылка или пакет, но не как фрейм.

Отсутствие отечественной терминологии в области новых информационных технологий привело к широкому использованию русских "калек" и английской аббревиатуры в качестве новых сетевых терминов, что дало возможность по крайней мере избежать какого-бы то ни было непонимания в среде специалистов по локальным сетям. Сейчас можно сказать, что терминология традиционных локальных сетей (Token Bus - ARCnet, Ethernet, Token Ring и FDDI) практически устоялась. Аналогичная ситуация характерна и для других новых ЛВС технологий Switched Ethernet и Fast Ethernet.

Сейчас, когда специалисты по локальным сетям активно готовятся к использованию и даже начали использовать технологии ATM и предполагают пользоваться технологией SDH для передачи потока ATM ячеек на физическом уровне, вопрос об использовании единой терминологии в локальных и глобальных сетях стал как никогда актуальным.



4.2.2. Некоторые предложения по выбору терминологии в технологиях PDH и SDH

Приведу некоторые положения, которыми руководствовался автор при выборе нового термина или его переводе с языка оригинала, и остановлюсь на некоторых спорных терминах. Так как все новые сетевые термины пришли к нам "от них", то проблема терминологии сводится к проблеме их заимствования или адекватного перевода. Было бы логично при этом придерживаться ряда принципов:

1   - При выборе варианта перевода нужно следить, чтобы "множество возможных толкований" данного варианта не пересекалось или минимально пересекалось с аналогичным множеством у других терминов.

2       - Вариант перевода или термин должен сохранять этимологию исходного (переводимого) термина.

3       - При выборе варианта перевода следует учитывать сложившуюся практику перевода, если она не противоречит другим принципам.

4       - Следует избегать описательных переводов терминов, а если этого сделать не удается - нужно использовать "русскую кальку" в качестве нового термина, ожидая, что-либо этот термин-калька получит поддержку, либо другие предложат более удачный термин.

5       - Вариант перевода, используемый в качестве термина, должен быть кратким, позволяющим легко образовывать производные формы или связки.

В последнее время у разных специалистов происходит сближение позиций по использованию одинаковой терминологии. Например, сейчас практически не существует разногласий по двум распространенным дилеммам:

-         октет - байт. В обоих случаях это поле длиной в восемь бит, обрабатываемое как единое целое (термин октет в значении 8-битный (а не 7-битный) байт появился на рубеже 50-60 годов в связи с развитием ИКМ). Практически все стали использовать термин байт.

-         стык - интерфейс. В обоих случаях это совокупность технических и программных средств, используемых для сопряжения устройств или систем, или программ. Практически везде стал использоваться термин интерфейс, как более широкое понятие, используемое в связке с поясняющими его определениями: логический интерфейс, физический интерфейс, программный интерфейс (в [127], например, приведено 28 таких связок).

Вместе с тем существует ряд терминов, в том числе и трактуемых как наиболее правильные, перевод которых и сейчас вызывает споры и в силу этого определенный выбор автора требует некоторого пояснения

В технологиях PDH и SDH используется довольно много новых терминов, не характерных для других сетевых технологий. Одни из них переведены удачно, перевод других можно было бы оспорить. Ниже приведены некоторые наиболее важные из них:

1       - frame - переводится или как кадр, или как цикл, или как фрейм. Во всех случаях это блок данных фиксированной длины, представляемый либо в виде одномерного последовательного поля (технологии Frame Relay, PDH), либо в виде двумерной таблицы (технология SDH). Предлагается использовать термин кадр (для одномерного последовательного поля), либо фрейм (для двумерной таблицы и вообще для технологий PDH и SDH, где они достаточно тесно переплетаются). В технологиях PDH и SDH традиционно для обоих представлений frame переводят как "цикл". Однако цикл - понятие временное: "Цикл - совокупность явлений, процессов, составляющая кругооборот в течение известного промежутка времени", [138, с.1492]. Фрейм - понятие пространственное. Когда пишут, что цикл в SDH представляет собой структуру, состоящую из 9 строк и 270 столбцов, то, вольно или невольно, определяют временное понятие, как пространственное, что, по сути, является ошибкой. В то же время нормально звучат связки типа: "цикл повторения фрейма составляет ...", где временное понятие используется в качестве указания на периодичность повторения пространственного понятия.

Использование термина фрейм, позволяет избавиться и от еще одного непривычного термина сверхцикл, предлагаемого в качестве эквивалента исходного термина multiframe (мультифрейм). Приставка "мульти" напоминает о том, что мультифрейм получен путем мультиплексирования фреймов. Приставка "сверх", напротив, не соответствует этимологии исходного термина.

2   - trib, tributary - переводится как компонентный сигнал, подчиненный сигнал [12] или нагрузка, поток нагрузки [165]. Вариант, используемый автором - триб. Последний термин базируется на русской кальке триб при переводе слова trib, tributary, к нему примыкает и группа производных терминов с прилагательным трибный: трибный блок (tributary unit) трибный интерфейс (tributary interface). Такой перевод кажется наиболее адекватным и вовсе не случайным. Разработчики технологий PDH и SDH, используя термин trib (tributary), хотели подчеркнуть тот факт, что это не просто произвольная составляющая - компонентный сигнал, участвующая в схеме мультиплексирования, а такая составляющая, которая соответствует (подчиняется) иерархии PDH (PDH trib - триб PDH) или иерархии SDH (SDH trib - триб SDH). С этой точки зрения термин подчиненный сигнал сохраняет этимологию исходного термина. Однако он и основанные на нем связки типа "интерфейс подчиненного сигнала" оказываются громоздкими по сравнению с кратким и четким термином "трибный интерфейс". Как и в предыдущем случае "русские кальки" - триб, трибный блок, трибный интерфейс звучат проще, полностью сохраняют этимологию исходных терминов и что не менее важно нормально воспринимаются специалистами по этим технологиям, воспитанными на оригинальных публикациях рекомендаций CCITT (ITU-T). Что касается замечаний, что правильнее переводить трибутарий (вместо триб) и соответственно трибутарный (вместо трибный), то замечу, что триб (trib) - грамматически правильная краткая форма слова tributary (трибутарий), см., например [130, р.2440]. Именно ее в силу краткости автор и предлагает использовать в качестве термина. Для законченности рассуждений, дадим некоторые определения:

- триб - цифровой поток или сигнал, используемый в схеме мультиплексирования PDH или SDH, или SONET иерархий для формирования более высокого уровня соответствующей иерархии;

- триб  PDH   -   триб,   скорость   передачи   которого   соответствует  одной   из   PDH   иерархий (например, трибы 2, 8, 34, 140 Мбит/с соответствуют европейской иерархии PDH);

- триб SDH - триб, скорость передачи которого соответствует SDH иерархии (например, трибы 155, 622, 2488, 9952 Мбит/с);

- триб SONET - триб, скорость передачи которого соответствует иерархии SONET (например, трибы 52, 104, 155, 207 и т.д. до n х 51.84 Мбит/с).

Чтобы показать разницу между понятием компонентный сигнал и триб, укажем, например, что сигнал 512 кбит/с (так называемый дробный Е1) может быть компонентным сигналом мультиплексора, но не может быть трибом, так как не соответствует ни PDH, ни SDH, ни SONET иерархиям.

Производные термины:

- трибный блок (TU) - блок данных, содержащий виртуальный контейнер (инкапсулирующий один или несколько соответствующих трибов) вместе с указателем блока, определяющим положение начала полезной нагрузки внутри виртуального контейнера следующего уровня (в который инкапсулирован данный блок);

- группа грибных блоков (TUG) - структура, полученная в результате мультиплексирования нескольких трибных блоков в схеме формирования модуля STM-N.

3       - alarm - переводится как тревожный сигнал, сигнал тревоги [131], сообщение об отказе [126], аварийн(ое/ый) состояние/сигнал [132]. Широко используется производный термин - Alarm Indication Signal (AIS) - сигнал индикации аварийного состояния. В книге автором используется перевод слова alarm как "аварийное состояние", хотя и его перевод как "аларм", можно было бы обосновать не только широким использованием его в жаргоне "сетевиков", но и потому, что он краток, соответствует оригиналу и легко связывается для создания адекватных оригиналу производных терминов, например, сигнал аларма, индикатор аларма, цветокодировка аларма, статус аларма, а также потому, что это более широкое понятие. Оно не обязательно означает аварийное состояние в нашем понимании или не всегда является сообщением об отказе. Образно говоря, аларм понятие цветное, а не черно-белое, как сигнал тревоги. Оно отображает одно (текущее, или привязанное к какому-то (прошедшему) моменту времени) состояние из множества состояний системы. Алармы можно игнорировать (фильтровать) или группировать для формирования обобщенного показателя.

4   - unit - переводится как блок в связках типа: AU - административный блок, AUG - группа административных блоков, TU - трибный блок, TUG - группа трибных блоков; использование для всех вышеназванных понятий термина модуль, как это сделано в [165], трудно оправдать, хотя бы потому, что в оригинале стандартов используются оба термина: блок и модуль, причем последний используется только для STM - синхронного транспортного модуля. Кроме того, модуль - законченное образование, тогда как блок - его составная часть. Как известно, в SDH иерархии TU, TUG, AU, AUG - суть логические блоки (не существующие самостоятельно), из которых и собирается физически существующий транспортный модуль STM.

Для других терминов, используемых автором, все необходимые определения терминов интересующиеся могут найти в соответствующих стандартах. Наиболее полно они отражены в [133,134,135]. Для удобства читателя все используемые в данной книге сокращения и соответствующие им термины помещены в Списке сокращений в конце книги.

Для обозначения форматов данных, используемых в различных информационных технологиях, используются различные термины, которые в ряде случаев обозначают одно и тоже. Ниже приведены некоторые предложения по их унификации, основанные на анализе используемого разнообразия терминов: ячейка, кадр, пакет, цикл, фрейм, контейнер и сообщение. Все они фактически используются для одного и того же - для обозначения блока данных фиксированной или переменной длины, имеющего определенную и различную (в зависимости от технологии) структуру составляющих его полей. Наиболее логичным было бы использовать единообразную и вместе с тем непересекающуюся терминологию, предлагаемую ниже вместе с кратким определением каждого термина:

-         кадр - блок данных постоянной (фиксированной) длины, представленный в одномерном виде (ATM, FDDI, PDH);

-         фрейм - блок данных постоянного (фиксированного) размера, представленный в двумерном виде или развернутый в виде одномерного блока с сохранением структуры двумерного (PDH, SDH);

-         пакет - блок данных переменной длины, представленный в одномерном виде (Arcnet, Ethernet, FDDI, Token Ring, Frame Relay, X.25, ISDN);

-         сообщение - блок данных переменной длины, состоящий из нескольких кадров или пакетов, представленный в одномерном виде;

-         контейнер - блок данных, имеющий ряд фиксированных размеров, представленный в двумерном виде (SDH).

Что касается SDH, то в силу вышесказанного ее блоки данных следует называть фреймами, если вы описываете их как фиксированную двумерную структуру (например, матрицу размера 9x270 - 9 строк по 270 байт), или кадрами если рассматривать их как одномерный блок, не сохраняющий структуру двумерного представления. Первое представление удобно для логических манипуляций и анализа, второе - как блок для обработки в неком физическом устройстве. В данной книге автор использует для PDH и SDH единообразные термины фрейм и мультифрейм. Иначе пришлось бы использовать двойственные термины кадр, мультикадр/фрейм, мультифрейм, что не удобно, особенно когда в одном тексте приходится описывать одну структуру, представляемую то в одномерном, то в двумерном виде.

Синхронная цифровая иерархия SDH (СЦИ)





Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru