Лекции по Синхронной цифровой иерархии SDH (СЦИ)   

2. Синхронные цифровые сети на основе технологии SDH

2.7.3. Практический пример расчета сети SDH

Широкое распространение сетей SDH в последнее время связано не только со строительством новых, преимущественно линейных или кольцевых, сетей, но и с модернизацией старых телефонных сетей, в том числе и тех, которые используют достаточно современные, особенно для России, PDH сети на основе ВОК. В ряде случаев такие станции для обеспечения связи друг с другом в пределах одного района связывались в так называемое технологическое кольцо. Если потоки на различных участках такого технологического кольца значительно отличаются, то использование характерных кольцевых SDH топологий бывает не всегда оправдано, так как приводит к завышению необходимого числа каналов, циркулирующих по кольцу, и, как следствие, к необходимости использовать SDH мультиплексоры ввода/вывода более высокого уровня. В этих случаях может оказаться, что дешевле использовать сети с ячеистой структурой, основанные на топологиях "точка-точка" и "звезда", тем более, что современные мультиплексоры позволяют использовать последнюю топологию с достаточно большим числом лучей за счет использования более гибких схем кросс-ком мутации в центральном узле.

Рассмотрим достаточно типичное Техническое Задание на проектирование сети SDH:

-         в районе построено 6 цифровых АТС;

-         предполагается использовать технологию SDH, связав все станции в единую сеть;

-         цифровая коммутация АТС позволяет использовать как основные цифровые каналы (ОЦК) со скоростью 64 кбит/с, так и каналы с первичной скоростью иерархии PDH - 2 Мбит/с;

-         каналы имеют интерфейсы G.703 и могут быть состыкованы с РРЛ или ВОК линиями магистральной связи;

-         сеть предполагается построить в два этапа: первый - осуществляется, например, в 1997г., а второй - в 1998г.;

-         существующий и предполагаемый в 1998г. сетевой трафик, пересчитанный на число каналов 2 Мбит/с, представлен в таблице 2-3 числами слева от главной диагонали ABCDEF (за основу для примера принята схема трафика, приведенная в [58]);

-         часть каналов должны иметь 100% резервирование, т.е. защиту типа 1+1 (в терминологии SDH сетей), они представлены числами в той же таблице, справа от диагонали ABCDEF.

Требуется выбрать топологию и необходимое оборудование.

Схема решения включает следующие этапы:

· выбор топологии,

· выбор требуемого уровня и числа мультиплексоров,

· выбор поставщика оборудования и изучение номенклатуры сменных блоков,

· конфигурация мультиплексорных узлов и составление спецификации оборудования.

Выбор топологии

Не вдаваясь подробно в анализ ситуации, можно предложить три возможные топологии: кольцевую, радиально-кольцевую и ячеистую.

Кольцевая топология, объединяя все шесть станций в кольцо, требует использования мультиплексоров уровня STM-4 с суммарным потоком до 252 (4x63=252) каналов 2 Мбит/с, так как общий поток по кольцу, определямый максимальным потоком на одном из его участков, равен 212 каналов 2 Мбит/с (см. таб.2-3 - поток через узел А в 1998г.). Преимуществом такого решения может быть только стопроцентное резервирование всех, а не только требуемых, каналов.

Радиально-кольцевая топология. Так как только два узла; Е и F имеют потоки меньше 63 каналов - 27 и 31 соответственно (см. таб.2-3), то кольцо должно состоять из 4 мультиплексоров уровня STM-4 и одной радиальной ветви (если Е и F связаны между собой непосредственно) или двух радиальных ветвей (если они подключаются к кольцу порознь: Е к С, а F к D и не связаны между собой непосредственно). Радиальные ветви требуют топологии "точка-точка" типа уплощенного кольца (рис.2-28), если нужна защита, где "точка", контактирующая с кольцом (рис.2-34) или мультиплексор связи должен быть типа ADM, а не ТМ, для организации перегрузки потока с кольцевого узла на радиальный. В первом варианте решения поэтому потребуется 4 мультиплексора уровня STM-4 и три - уровня STM-1, во втором - на один мультиплексор уровня STM-1 больше. В ряде случаев (наличие свободных слотов для кросс-коммутатора) роль мультиплексора связи может играть мультиплексор кольцевого узла, что уменьшает надежность сети, но приводит к экономии одного (первый вариант) или двух (второй вариант) мультиплексоров связи.

Ячеистая топология может иметь вид, приведенный на рис.2-45. Ячеистая сеть состоит из двух квадратных ячеек и содержит шесть узлов. Каждый из них на практике соответствует мультиплексору уровня STM-N, установленному на цифровой АТС. В нашем случае в узлах А, В, С, D - мультиплексоры уровня STM-4, а в узлах Е и F - уровня STM-1 (потоки между С и Е, Е и F, D и F несут меньше 63 каналов).

Эта схема приводит к минимальному числу требуемых мультиплексоров различных уровней и с этой точки зрения она оптимальна, однако сложности возникают при необходимости организации защиты выделенных каналов. Вопросы защиты решаются здесь как и в обычных сетях путем направления выделенного канала по двум маршрутам с совпадающими конечными точками, например, по маршрутам А®В и А®С®D®B. Такая схема защиты "по разнесенным маршрутам" (1:1) иногда более предпочтительна, чем схема защиты 1:1 в кольце SDH. Однако она требует более тщательного расчета числа потоков, проходящих по отдельным ветвям сети, для того, чтобы убедиться, что оно не превышает возможности кросс-коммутатора узлового мультиплексора, прежде чем ответить на вопрос о том, какого уровня мультиплексор может быть использован в данном узле.

Рассмотрим эту проверку более подробно, основываясь на информации из таб.2-3. В результате получим следующую таблицу 2-4, дающую сводную информацию о потоках, проходящих по ВОК между узловыми мультиплексорами на станциях (защищаемые каналы, проходящие по резервным маршрутам, помечены буквой "р"). Число каналов дано по годам 1997/1998. В последней строке помещены итоговые суммы на последнем этапе.

В качестве резервных были выбраны следующие маршруты:

- основной А®В,                    резервный А®С®D®В;

- основной А®С,                    резервный А®В®D®С;

- основной В®D,                    резервный В®А®С®D;

- основной С®D,                   резервный С®А®В®D;

- основной С®Е,                    резервный С®D®F®Е;

- основной D®F,                    резервный D®С®Е®F;

- основной Е®F,                    резервный Е®С®D®F.

Заметим, что резервные маршруты в этой топологической структуре выбираются в пределах одной ячейки.

Выбор требуемого уровня и числа мультиплексоров. Полученная таблица подтверждает правильность выбора уровней мультиплексоров в узлах A-F и может служить показателем эффективности использования коммутационной способности узлов. В результате данного краткого обзора возможных топологий можно рекомендовать для использования ячеистую сеть с топологией на рис.2-45 как оптимальную, так как она при минимальном числе мультиплексоров (4 - уровня STM-4 и 2 - уровня STM-1) удовлетворяет поставленным условиям по резервированию определенных указанных каналов.

Выбор требуемого оборудования. Для конфигурации узлов, составления спецификации сменных модулей и прорисовки блок-схемы соединений сменных блоков всех узлов, кроме топологии сети (рис.2-45) и той информации, которая содержится в таблицах 2-3, 2-4, нужно иметь номенклатуру функциональных сменных блоков (неплохо также иметь ясное понимание их назначения и функциональных возможностей). Для этого необходима привязка к оборудованию конкретного производителя. Для нашего примера выбрано оборудование компании Nokia. Учитывая два этапа развития сети, следует указать какие блоки будут установлены на первом и какие на втором этапах.

Номенклатура сменных блоков SDH компании Nokia, используемых в примере:

-         2М - трибный интерфейсный блок 2 Мбит/с - интерфейсная карта на 16 портов 2 Мбит/с без терминального адаптера (ТА), функционирует только при наличии сменного блока 2МТА (до трех карт 2М на одну карту 2МТА);

-         2МТА - трибный интерфейсный блок 2 Мбит/с - интерфейсная карта на 16 портов 2 Мбит/с с терминальным адаптером (ТА);

-         STM-1 - линейный оптический агрегатный блок 155 Мбит/с;

- STM-1E - линейный электрический агрегатный блок 155 Мбит/с;

- STM-4 - линейный оптический агрегатный блок 622 Мбит/с;

-         SSW - блок системного кросс-коммутатора - центральный блок кросс-коммутатора типа DXC-4/4/1 с эквивалентной емкостью коммутации 16xAU-4 для коммутации VC-4, VC-12;

-         TSW1 - терминальный блок системного кросс-коммутатора - блок синхронизации AU-12 и AU-4 на входе для осуществления кросс-коммутации;

-         CU - блок управления и синхронизации;

- SPIU - блок питания полки (кассеты);

- SU - блок обслуживания интерфейсов.

Конфигурация мультиплексорных узлов и составление спецификации оборудования

Конфигурация узлов с мультиплексорами STM-1. Для работы любого SDH мультиплексора уровня STM-1 при минимальной конфигурации (1 трибная интерфейсная карта - 16 каналов 2 Мбит/с) требуется следующий набор блоков: 2xSTM-1, SSW, 2MTA, CU, SPIU, SU. Следовательно, для узлов Е и F (обслуживающих на первом этапе 15 и 14 каналов, а на втором этапе 27 и 31 канал соответственно) достаточно иметь минимальную конфигурацию на первом этапе с добавлением по одному блоку типа 2М на втором этапе. Так как узлы Е и F соединяются с узлами С и D оптическим каналом уровня STM-1, то никаких других блоков преобразования не требуется (рис.2-46, узлы Е и F).

Конфигурация узлов с мультиплексорами STM-4. Для работы SDH мультиплексора уровня STM-4 при минимальной конфигурации (1 трибная интерфейсная карта - 16 каналов 2 Мбит/с) требуется следующий набор блоков: 2xSTM-4, SSW, 2xTSW1, 2MTA, CU, SPIU, SU, если данный мультиплексор связан с другим таким же мультиплексором по оптическому каналу уровня STM-4 (как например мультиплексор узла В).

Для мультиплексора узла В, обслуживающего на первом этапе 50, а на втором - 112 каналов соответственно, следовательно, достаточно иметь на первом этапе минимальную конфигурацию с добавлением 1 блока 2МТА и 2 блоков типа 2М, а на втором этапе добавить еще 4 блока 2М.

Для мультиплексоров узлов С и D, работающих фактически в режиме концентраторов и дающих доступ потокам ячейки уровня STM-1 к ячейке уровня STM-4 (являющейся по сути "технологическим" кольцом STM-4), нужно предусмотреть по одному блоку STM-1 для связи с мультиплексорами Е и F соответственно на уровне оптического триба STM-1. Дополнительно они должны быть укомплектованы необходимым числом трибных интерфейсных блоков 2 Мбит/с, учитывая, что на первом этапе С и F должны обрабатывать 39 и 36 каналов, а на втором - 77 и 81 канал соответственно, необходимо максимально 5 карт для узла С и 6 - для D, 2 из которых должны быть типа 2МТА, (рис.2-46, узлы С и О).

Для мультиплексорного узла А, работающего в режиме мультиплексора ввода/вывода в технологическом кольце A®B®D®C, требуется обслуживать 110 каналов на первом и 212 каналов на втором этапах. Это требует 9 (7 типа 2М + 2 типа 2МТА) трибных интерфейсных блоков на первом и 14 (10 типа 2М + 4 типа 2МТА) на втором этапах. Учитывая, что возможность кросс-коммутации узла STM-4 минимально составляет 252 (4x63) канала 2 Мбит/с, а возможность размещения большого числа трибных интерфейсных блоков на одной полке ограничена, предлагается использовать дополнительные полки (помечаемые как узлы А1, А2, A3), связанные с основной полкой на уровне электрических три-бов STM-1 (на рис.2-46 приведено одно из возможных решений узла А).

Учитывая вышесказанное и рис.2-46, на котором для простоты не показаны блоки SPIU и SU, можно составить спецификацию на оборудование, необходимое для формирования указанной сети.



*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.