Лекции по Широкополосным сигналам и системам   

8. Бинарные последовательности с оптимальными периодическими автокорреляционными свойствами

8.6. Вновь о бинарных кодах с хорошими апериодическими АКФ

            Сведения, накопленные о бинарных последовательностях с хорошими периодическими АКФ, дают теперь возможность вернуться к идее, состоящей в использовании таких последовательностей в качестве исходного материала для поиска кодов с нужными свойствами апериодических автокорреляций. Как было показано ранее, хорошими апериодическими свойствами могут обладать только последовательности с хорошими периодическими корреляционными свойствами.

            Рассмотрим некоторую кодовую последовательность  длины . Любой ее циклический сдвиг , имеет ту же периодическую АКФ, что и исходный код, так как периодическая АКФ инвариантна к циклическому сдвигу. Апериодическая же АКФ циклически сдвинутой копии может отличаться от АКФ первоначальной последовательности. Данный факт служит основой широко распространенного алгоритма поиска кодов с приемлемой апериодической АКФ, описанного ниже.

            1). Для требуемой длины  тем или иным способом отбирается некоторое множество последовательностей-кандидатов, имеющих хорошие периодические АКФ. Пусть, например, их число равно .

            2). На втором этапе осуществляется полный перебор по критерию минимума максимального бокового лепестка апериодической АКФ среди всех однопериодных сегментов последовательностей-кандидатов. Очевидно, что всего необходимо произвести  тестовых проверок.

            3). Итогом поиска является один или несколько сегментов одной или нескольких последовательностей, имеющий минимальное значение  среди всех последовательностей, отобранных на первом этапе. Разумеется, нет никаких гарантий глобальной оптимальности полученного кода среди всех возможных бинарных последовательностей данной длины.

            Пример 8.6.1. Для длины , удовлетворяющей условию существования -последовательности, имеются два примитивных бинарных полинома степени 3:  и . Непосредственная проверка показывает, что -последовательности, генерируемые ими, зеркальны друг другу, т.е. одна из них получается чтением другой справа налево. К подобному преобразованию инвариантны и периодическая, и апериодическая АКФ, поэтому в множество кандидатов достаточно включить только одну -последовательность, скажем, из примера 8.3.1: . Кроме того,  является простым числом вида , т.е. последовательность Лежандра данной длины также существует, а именно последовательность примера 8.5.1: , к которой можно добавить ее модификацию с первым символом, замененным на –1. Последняя полностью повторяет отобранную -последовательность, тогда как первая – после замены знаков всех элементов – совпадает с циклически сдвинутой отброшенной -последовательностью. Поскольку изменение полярности вновь не влияет на периодическую и апериодическую АКФ, лишь одна из четырех рассмотренных минимаксных последовательностей достаточна для включения в множество кандидатов. Пусть ею будет последовательность Лежандра, начинающаяся символом +1.

            Вычисление ее апериодической АКФ дает следующие значения , и . После циклического сдвига на одну позицию влево приходим к последовательности , для которой , , т.е. максимальный апериодический боковой лепесток хуже, чем у исходной. Следующий циклический сдвиг дает  и , , т.е. не улучшает первоначальный результат. После следующего сдвига приходим к последовательности , имеющей апериодическую АКФ с боковыми лепестками , т.е. с . Данная последовательность является глобально оптимальной среди всех ФМ кодов, поскольку ни один из таковых не может обладать меньшим максимальным апериодическим боковым лепестком. В действительности, найден бинарный код Баркера длины 7.

            На основании описанной выше процедуры было найдено множество бинарных кодов с приемлемыми свойствами апериодической АКФ длин вплоть до тысяч, уровень боковых лепестков которых хорошо аппроксимируется соотношением

.

            Для иллюстрации продуктивности данного метода на рисунке следующего слайда представлены апериодические АКФ двух бинарных кодов длины . Первый (a) получен в результате укорочения последовательности Лежандра длины  и последующей оптимизации его циклических сдвигов, как описывалось ранее. Как видно, боковые лепестки данной АКФ имеют достаточно низкий уровень  или  дБ. Для сравнения на рисунке (b) представлена АКФ кода, используемого в 3G системе мобильной связи стандарта WCDMA для первичной синхронизации (поиска сот), который обладает большим уровнем боковых лепестков  или дБ. Конечно, необходимо иметь в виду, что при выборе кода для поиска соты в WCDMA приходилось считаться со многими факторами, включая реализационные, которые могли оказаться важнее хорошей автокорреляции.



*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.