Лекции по Широкополосным сигналам и системам   

1. Классические задачи обнаружения/различения и проблема оптимизации сигналов

1.5. Примеры множеств ортогональных сигналов

            Продемонстрируем вначале возможность построения простейших множеств ортогональных сигналов за счет дробления доступного частотно-временного ресурса.

1.5.1. Кодирование временным сдвигом

            Этот достаточно тривиальный способ кодирования означает, что каждый из сигналов сдвинут по времени относительно предшествующего на интервал, равный индивидуальной длительности сигнала . Очевидно, что не перекрывающиеся во временной области сигналы являются ортогональными (см. рисунок):

            Для каждого индивидуального сигнала частотно-временное произведение , так что данные сигналы относятся к разряду простых.   Недостатки ее, однако, также довольно очевидны и должны соответствующим образом учитываться. Во-первых, необходима точная синхронизация, поскольку флюктуации временного положения сигналов потенциально способны вызвать перекрытие последних, нарушающее их ортогональность. Другим недостатком этого простейшего ортогонального кодирования является то, что для сохранения требуемой энергии каждого сигнала необходимо обеспечить высокую пиковую мощность. Чем выше единицы значение пик-фактора  (отношения пиковой мощности к средней), тем более жесткие требования предъявляются к линейности усилителя и, как итог, хуже его энергетические показатели. Для временного кодирования  при .

1.5.2. Кодирование частотным сдвигом

            Другим прямым способом реализации ортогональности служит кодирование частотным сдвигом. На основании дуальности времени и частоты или теоремы Парсеваля скалярные произведения сигналов  и их спектров  совпадают:

,

что позволяет механически перенести только что обсужденную схему в частотную область (см. рисунок).

При полном перекрытии сигналов во времени  каждый из них занимает полосу не менее . Понятно, что каждый индивидуальный сигнал опять не является сигналом с распределенным спектром, поскольку его частотно-временное произведение , и значит, любая система со сколь угодно большим числом ортогональных сигналов подобного сорта, конечно, не является системой с распределенным спектром.

            В отличие от кодирования временным сдвигом пик-фактор ортогональных сигналов данного вида  и ошибки в синхронизации не играют столь критической роли, так как ортогональность достигается отсутствием перекрытия в частотной области. Вместо этого деструктивным в некоторых случаях может оказаться дрейф спектра (к примеру, вследствие эффекта Доплера). Тем не менее данный способ передачи чрезвычайно популярен и примером его непосредственного воплощения служит традиционная -ичная частотная манипуляция.

1.5.3. Ортогональное кодирование широкополосными сигналами

            Двум ранее рассмотренным методам ортогональной передачи присуще дробление общего частотно-временного ресурса. Первый из них предполагает выделение некоторой части общего временного пространства каждому сигналу, тогда как частотная область совместно используется всеми сигналами. При втором же способе роли временного и частотного пространства меняются местами. Распределение выделенного ресурса при временном и частотном кодировании иллюстрирует ниже приведенный рисунок.

            Альтернативой этим простейшим способам кодирования может служить метод, в котором любой сигнал занимает все доступное частотно–временное пространство: , , вследствие чего все сигналы являются широкополосными, поскольку

.

        

    В этих условиях все сигналы совместно используют общий частотно-временной ресурс без распределения или дробления последнего (см. рисунок, на котором третья ось используется для нумерации сигналов).

       

     Рассмотрим простой пример воплощения подобной идеи в форме дискретных БФМ сигналов. Образуем каждый из  сигналов как последовательность  следующих друг за другом элементарных импульсов или чипов прямоугольной формы и длительности  с изменяющейся полярностью. Предположим использование таких законов чередования полярности чипов, что все сигналы оказываются ортогональными, как это имеет место в примере для M=4 на рисунке слева.

            При  нахождение законов чередования полярностей, обеспечивающих ортогональность сигналов, эквивалентно нахождению матрицы Адамара. Последняя является матрицей порядка M, состоящей только из элементов  и обладающей ортогональными строками. Примеры матриц Адамара порядка два и четыре представлены ниже:

.

            Достаточно мощным способом конструирования матриц Адамара служит рекуррентный алгоритм Сильвестра, позволяющий построить матрицу порядка , если уже была найдена матрица порядка :

.

            Не трудно заметить, что, начиная алгоритм Сильвестра с простейшей матрицы , можно построить матрицы порядка , строками которых являются функции Уолша.

            Ортогональные сигналы подобного типа лишены недостатков присущих сигналам, ортогональность которых обеспечивается временным или частотным кодированием. Они характеризуются пик-фактором, равным единице, и не требуют параллельных полосовых фильтров в приемнике. Относясь к широкополосным сигналам, они обладают всеми достоинствами широкополосной философии, которые будут рассмотрены позднее. Вследствие этого в настоящее время они находят широкое применение. Так следует упомянуть CDMA систему мобильного телефона 2-го поколения стандарта IS-95 (cdmaOne), в которой используются M=64 функции Уолша как в прямом (для образования каналов), так и в обратном (для рассмотренной выше 64-ичной передачи) каналах. В стандартах мобильной связи 3-го поколения WCDMA и cdma2000 планируется использовать значительно большее число (вплоть до 512) ортогональных сигналов на основе матриц Адамара.

            Можно дать следующее резюме к содержанию параграфов 1.3-1.5. Как можно видеть, теоретически классическая задача -ичной передачи не ориентирует на безоговорочное использование технологии расширения спектра и, в принципе, оптимальный -ичный ансамбль можно составить из простых сигналов. С другой стороны, существуют стимулы реализационного порядка, подкрепленные стремлением к утилизации преимуществ расширенного спектра вне классической постановки задачи приема. Поскольку такая возможность потенциально присутствует всякий раз, когда полный частотно-временной ресурс  принципиально необходим, предпочтение разработчиком широкополосных сигналов простым в подобных обстоятельствах может оказаться вполне оправданным.



*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.