Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.4.2. Цифровой согласованный фильтр

В разделе 3.2.2 рассматривалась основная особенность согласованного фильтра — то, что его импульсная характеристика представляет собой запаздывающую версию зер­кального отображения (поворота относительно оси t = 0) входного сигнала. Таким об­разом, если сигнал равен s(t), его зеркальное отображение имеет вид s(-t), а зеркальное отображение, запаздывающее на Т секунд, имеет вид s(T-t). Следовательно, импульсная характеристика h(t), соответствующая сигналу s(t), будет равна следующему.

(4.26)

На рис. 4.7 и 4.8 представлена основная функция коррелятора — интегрирование произведения принятого зашумленного сигнала с каждым опорным сигналом и определение наилучшего соответствия. Схемы, показанные на этих рисунках, подразуме­вают использование аналоговой аппаратуры (умножителей и интеграторов) и непре­рывных сигналов. На них не отражена возможность реализации коррелятора или со­гласованного фильтра (matched filter — MF) с использованием цифровых технологий и дискретных сигналов. Пример подобной реализации приведен на рис. 4.10, где по­казан согласованный фильтр, использующий цифровую аппаратуру. Входной сигнал r(t) состоит из сигнала-прототипа s,(t) и шума n(i); ширина полосы сигнала W= 1/2T, где Т — длительность передачи символа. Таким образом, минимальная частота дис­кретизации по Найквисту равна fs = 2W= 1/T, а время взятия выборки (Ts) должно быть не больше времени передачи символа. Другими словами, на символ должно прихо­диться не менее одной выборки. В реальных системах подобная дискретизация произ­водится с частотой, в 4 или более раз превышающей минимальную частоту Найквиста. Платой за это является не увеличение полосы передачи, а увеличение быстродей­ствия процессора. В моменты t = kTs выборки (как показано на рис. 4.10, а) сдвигаются в регистре, так что более ранние из них располагаются правее. При дис­кретизации (взятии выборки) полученного сигнала непрерывное время t заменяется дискретным kTs или просто k, что дает право использовать дискретную запись.

Здесь индекс i определяет символ из М-арного набора (в нашем случае — двоичного), a k — дискретное время. На рис. 4.10 согласованный фильтр аппроксимируется реги­стром сдвига с весовыми коэффициентами с/(п), где п=0,...,N-1 — временной ин­декс весовых коэффициентов и разрядов регистра. В приведенном примере число раз­рядов регистра и количество выборок на символ равны 4. Итак, суммирование, пока­занное на рисунке, происходит в моменты времени от n = 0 до n = 3. Из расположения сумматора на схеме понятно что решение относительно значения принятого сигнала принимается после заполнения регистра 4 выборками. Отметим, что для простоты в примере на рис. 4.10, б выборки si(k) могут принимать только три значения (0, ±1). В реальных системах каждая выборка (и весовой коэффициент) — это 6-10 бит. Множе­ству весовых коэффициентов фильтра {ci(n)} соответствует импульсная характеристика фильтра; согласование весовых коэффициентов с выборками сигнала производится согласно дискретному варианту уравнения (4.26).

(4.27)

Использование дискретной формы интеграла свертки из уравнения (А.44,6) позволяет записать выражение с выхода коррелятора в момент времени, соответствующий k-й. выборке.


(4.28)

а)



б)

Рис. 4.10. Цифровой согласованный фильтр: а) дискретный согласованный фильтр; б) пример обнаружения с использованием дискретного согласованного фильтра (шумом пренебрегаем)

Здесь х по модулю у — это остаток деления х на у, индекс kвремя принятия выбо­рок и выхода фильтра, an — фиктивная переменная времени. В формуле (4.28) выра­жение r(k-n) содержит п, которое можно рассматривать как "возраст" выборки (как давно она находится в фильтре). В выражении сi(п) л удобно рассматривать как адрес весового коэффициента. Предполагается, что система синхронизирована и упорядоче­ние символов во времени известно. Также предполагается, что шум имеет нулевое среднее, так что математическое ожидание принятой выборки равно следующему.

Следовательно, при передаче si(t) математическое ожидание выхода согласованного фильтра равно следующему.

(4.29)

На рис. 4.10, б, где сигналы-прототипы изображены как функции времени, видим, что крайняя слева выборка (амплитуда, равная +1) графика s1(t) представляет выборку в момент времени k = 0. Предполагая, что передан был сигнал s1(t) и для упрощения записи мы пренебрегли шумом, можем записать принятую выборку r(k) как s1(k). Выборки заполняют разряды согласованного фильтра, и в конце каждого периода передачи символа в крайнем правом разряде каждого регистра расположена выборка k=0. Отметим, что в формулах (4.28) и (4.29) временные индексы п эталонных весовых ко­эффициентов расположены в порядке, обратном к временному индексу k - п выборок, что является ключевой особенностью интеграла свертки. То, что наиболее ранняя вы­борка теперь соответствует крайнему справа весовому коэффициенту, обеспечивает значащую корреляцию. Даже если действия согласованного фильтра мы математиче­ски опишем как свертку сигнала с импульсной характеристикой фильтра, конечный результат будет корреляцией сигнала с копией самого себя. По этой причине корреля­тор можно реализовать как согласованный фильтр.

На рис. 4.10, б обнаружение, происходящее после выхода сигнала с согласованного фильтра, осуществляется обычным образом. Для принятия двоичного решения выхо­ды z/(£) изучаются при каждом значении k=N-l, соответствующем концу символа. При условии передачи st(t) и пренебрежении шумом, уравнения (4.27)-(4.29) можно объединить и записать выходы коррелятора в моменты времени k =

= N -1=3.

(4.30,а)

(4.30,б)

Поскольку z1 (k = 3) больше z2(k = 3), детектор принимает решение, что передан был символ s1(t).

Может возникнуть вопрос: чем согласованный фильтр на рис. 4.10, б отличается от коррелятора на рис. 4.8. В случае согласованного фильтра в ответ на каждую новую вы­борку на входе появляется новое значение на выходе; следовательно, выход представляет собой временной ряд, такой как на рис. 3.7, б (последовательность возрастающих поло­жительных и отрицательных корреляций с входной синусоидой). Подобную последова­тельность на выходе согласованного фильтра можно получить при использовании не­скольких корреляторов, работающих на разных начальных точках входящего временного ряда. Отметим, что за время передачи символа на выходе коррелятора получаем макси­мальное значение сигнала в момент времени Т (см. рис. 3.7, б). Если синхронизировать согласованный фильтр и коррелятор, их выходы в конце периода передачи символа будут идентичными. Важным отличием между согласованным фильтром и коррелятором является то, что поскольку на выходе коррелятора получаем одно значение на символ, он должен использовать дополнительную информацию, например, относительно момен­тов начала и завершения интегрирования произведения. При наличии ошибок синхро­низации дискретный сигнал, подаваемый с коррелятора на детектор, может быть сильно искажен. С другой стороны, поскольку на выходе согласованного фильтра получаем временной ряд выходных значений (отражающих смещенные во времени входящие выбор­ки, умноженные на фиксированные весовые коэффициенты), использование дополни­тельной схемы позволяет определить моменты, наиболее подходящие для дискретизации выхода согласованного фильтра.

Пример 4.1. Цифровой согласованный фильтр

Рассмотрим набор сигналов

где k =0,1,2,3.

Опишите, как цифровой согласованный фильтр (рис. 4.10) может использоваться для обна­ружения принятого сигнала, скажем s1(t), при отсутствии шума.

Решение

Вначале сигнал s1(i) преобразуется в набор выборок . Приемник цифрового согласо­ванного фильтра, как показано на рис. 4.10, б, представляет собой две ветви. Верхняя ветвь состоит из регистра сдвига и коэффициентов, согласовывающихся с точками дискретизации . Подобным образом нижняя ветвь состоит из регистра сдвига и коэффициентов, со­гласовывающихся с точками дискретизации . В четырех равномерно расположенных точках выборки (k = 0, 1,2, 3) сигналы имеют следующие значения.

Коэффициенты сi(n) представляют запаздывающий зеркальный поворот сигнала, с которым согласовывается фильтр. Следовательно, так что можно записать .

Рассмотрим верхнюю ветвь рис. 4.10, б. В момент времени k = 0 первая выборка s1(k = 0) =0 поступает в крайний левый разряд каждого регистра. В следующий дискретный момент вре­мени k=1 вторая выборка s1(k= l)=A/4 поступает в крайний левый разряд каждого реги­стра; в то же время первая выборка сдвигается в ближайший справа разряд каждого регистра и т.д. В момент k =3 в крайний левый разряд поступает выборка s1(k = 3) = ЗА/4; к. этому моменту первая выборка сдвинута к крайнему правому разряду. Четыре выборки сигнала те­перь расположены в регистрах в зеркальном порядке по отношению к времени их создания. Таким образом, при данном расположении поступающих выборок сигнала и опорных ко­эффициентов выход сумматора естественным образом описывается операцией свертки и максимизирует корреляцию в соответствующей ветви.



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.