***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.5.3. Некогерентное обнаружение сигналов FSK

Детектор, выполняющий некогерентное обнаружение сигналов в модуляции FSK, описы­ваемых уравнением (4.8), можно реализовать с помощью корреляторов, подобных пока­занным на рис. 4.7. При этом оборудование приема следует настроить как детектор энер­гии без измерения фазы. По этой причине некогерентный детектор обычно требует вдвое большего числа ветвей-каналов, чем когерентный. На рис. 4.18 показаны синфазный (I) и квадратурный (Q) каналы, используемые для некогерентного обнаружения набора сигна­лов в бинарной модуляции FSK (BFSK). Отметим, что две верхние ветви настроены на обнаружение сигнала с частотой для синфазной ветви опорный сигнал имеет вид , а для квадратурной — . Подобным образом две нижние ветви настроены на обнаружение сигнала с частотой ; для синфазной ветви опорный сигнал имеет вид , а для квадратурной — . Предположим, что принятый сигнал r(t) имеет вид точно , т.е. фаза точно равна нулю. Следовательно, сиг­нальный компонент принятого сигнала точно соответствует (по частоте и фазе) опорному сигналу верхней ветви. В такой ситуации максимальный выход должен дать интегратор произведений верхней ветви. Вторая ветвь должна дать нулевой выход (проинтегрированный шум с нулевым средним), поскольку ее опорный сигнал ортогонален сигнальному компоненту сигнала r(t). При ортогональной пере­даче сигналов (см. раздел 4.5.4) третья и четвертая ветви также должны дать выходы по­рядка нуля, поскольку их опорные сигналы также ортогональны сигнальному компоненту сигнала r(t).

Рис. 4.18. Квадратурный приемник

Рассмотрим теперь другую возможность. Пусть принятый сигнал r(t) имеет вид . В этом случае максимальный выход должна дать вторая ветвь схемы (рис. 4.18), а выходы других ветвей должны быть порядка нуля. В реальной системе сиг­нал r(t) скорее всего описывается выражением , т.е. входящий сигнал будет частично коррелировать с опорным сигналом и частично — с сигналом . Поэтому некогерентный квадратурный приемник ортогональных сигналов и тре­бует синфазной и квадратурной ветви для каждого возможного сигнала набора. Блоки, показанные на рис. 4.18 после интеграторов произведений, выполняют операцию возведения в квадрат, что предотвращает появление возможных отрицательных значений. За­тем для каждого класса сигналов набора (в бинарном случае — для двух) складываются величины из синфазного канала и из квадратурного канала. На конечном этапе формируется тестовая статистика z(T) и выбирается сигнал с частотой , или , в зави­симости от того, какая пара детекторов энергии дала максимальный выход.

Существует еще одна возможная реализация некогерентного обнаружения сигналов FSK. В этом случае используются полосовые фильтры, центрированные на частоте с полосой , за которыми, как показано на рис. 4.19, следуют детекторы огибающей (envelope detector). Детектор огибающей состоит из выпрямителя и фильтра нижних частот. Детекторы согласовываются с огибающими сигнала, а не с самими сигна­лами. При определении огибающей фаза несущей не имеет значения. При бинарной FSK решение относительно значения переданного символа принимается путем опреде­ления, какой из двух детекторов огибающей дает большую амплитуду на момент изме­рения. Подобным образом для системы, использующей многочастотную фазовую мани­пуляцию (multiple frequency shift-keying — MFSK), решение относительно принадлежно­сти переданного символа к одному из М возможных принимается путем определения, какой из М детекторов огибающей дает максимальный выход.

Рис. 4.19. Некогерентное обнаружение сигналов FSK с использованием детекторов огибающей

Детектор огибающей, изображенный на блочной диаграмме рис. 4.19, кажется проще квадратурного приемника, показанного на рис. 4.18, но не стоит забывать, что использование (аналоговых) фильтров обычно приводит к большей массе и стоимости детекторов огибающей по сравнению с квадратурным приемником. Поскольку квад­ратурные приемники могут реализовываться цифровым образом, с появлением больших интегральных схем их использование в качестве некогерентных детекторов стало предпочтительнее. Детектор, показанный на рис. 4.19, может реализовываться цифровым образом, использование аналоговых фильтров заменяется выполнением дискретного преобразования Фурье. Подобная структура обычно сложнее цифровой реализа­ции квадратурного приемника.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.