Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

4.5.3. Некогерентное обнаружение сигналов FSK. Теоретические основы цифровой связи

Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.5.3. Некогерентное обнаружение сигналов FSK

Детектор, выполняющий некогерентное обнаружение сигналов в модуляции FSK, описываемых уравнением (4.8), можно реализовать с помощью корреляторов, подобных показанным на рис. 4.7. При этом оборудование приема следует настроить как детектор энергии без измерения фазы. По этой причине некогерентный детектор обычно требует вдвое большего числа ветвей-каналов, чем когерентный. На рис. 4.18 показаны синфазный (I) и квадратурный (Q) каналы, используемые для некогерентного обнаружения набора сигналов в бинарной модуляции FSK (BFSK). Отметим, что две верхние ветви настроены на обнаружение сигнала с частотой для синфазной ветви опорный сигнал имеет вид , а для квадратурной — . Подобным образом две нижние ветви настроены на обнаружение сигнала с частотой ; для синфазной ветви опорный сигнал имеет вид , а для квадратурной — . Предположим, что принятый сигнал r(t) имеет вид точно , т.е. фаза точно равна нулю. Следовательно, сигнальный компонент принятого сигнала точно соответствует (по частоте и фазе) опорному сигналу верхней ветви. В такой ситуации максимальный выход должен дать интегратор произведений верхней ветви. Вторая ветвь должна дать нулевой выход (проинтегрированный шум с нулевым средним), поскольку ее опорный сигнал ортогонален сигнальному компоненту сигнала r(t). При ортогональной передаче сигналов (см. раздел 4.5.4) третья и четвертая ветви также должны дать выходы порядка нуля, поскольку их опорные сигналы также ортогональны сигнальному компоненту сигнала r(t).

Рис. 4.18. Квадратурный приемник

Рассмотрим теперь другую возможность. Пусть принятый сигнал r(t) имеет вид . В этом случае максимальный выход должна дать вторая ветвь схемы (рис. 4.18), а выходы других ветвей должны быть порядка нуля. В реальной системе сигнал r(t) скорее всего описывается выражением , т.е. входящий сигнал будет частично коррелировать с опорным сигналом и частично — с сигналом . Поэтому некогерентный квадратурный приемник ортогональных сигналов и требует синфазной и квадратурной ветви для каждого возможного сигнала набора. Блоки, показанные на рис. 4.18 после интеграторов произведений, выполняют операцию возведения в квадрат, что предотвращает появление возможных отрицательных значений. Затем для каждого класса сигналов набора (в бинарном случае — для двух) складываются величины из синфазного канала и из квадратурного канала. На конечном этапе формируется тестовая статистика z(T) и выбирается сигнал с частотой , или , в зависимости от того, какая пара детекторов энергии дала максимальный выход.

Существует еще одна возможная реализация некогерентного обнаружения сигналов FSK. В этом случае используются полосовые фильтры, центрированные на частоте с полосой , за которыми, как показано на рис. 4.19, следуют детекторы огибающей (envelope detector). Детектор огибающей состоит из выпрямителя и фильтра нижних частот. Детекторы согласовываются с огибающими сигнала, а не с самими сигналами. При определении огибающей фаза несущей не имеет значения. При бинарной FSK решение относительно значения переданного символа принимается путем определения, какой из двух детекторов огибающей дает большую амплитуду на момент измерения. Подобным образом для системы, использующей многочастотную фазовую манипуляцию (multiple frequency shift-keying — MFSK), решение относительно принадлежности переданного символа к одному из М возможных принимается путем определения, какой из М детекторов огибающей дает максимальный выход.

Рис. 4.19. Некогерентное обнаружение сигналов FSK с использованием детекторов огибающей

Детектор огибающей, изображенный на блочной диаграмме рис. 4.19, кажется проще квадратурного приемника, показанного на рис. 4.18, но не стоит забывать, что использование (аналоговых) фильтров обычно приводит к большей массе и стоимости детекторов огибающей по сравнению с квадратурным приемником. Поскольку квадратурные приемники могут реализовываться цифровым образом, с появлением больших интегральных схем их использование в качестве некогерентных детекторов стало предпочтительнее. Детектор, показанный на рис. 4.19, может реализовываться цифровым образом, использование аналоговых фильтров заменяется выполнением дискретного преобразования Фурье. Подобная структура обычно сложнее цифровой реализации квадратурного приемника.






Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru