4.5.4.2. Дуальные соотношения

Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.5.4.2. Дуальные соотношения

Инженерную концепцию дуальности можно определить следующим образом. Два процесса (функции, элемента или системы) дуальны друг другу, если описывающие их математические соотношения идентичны, с точностью до фигурирующих в них пере­менных (например, время и частота). Рассмотрим передачу сигналов FSK, где, как показано на рис. 4.20, модулированные сигналы имеют вид функций sinc (fT). Данная длительность тона определяет минимальное расстояние по частоте между тонами, необходимое для получения ортогональности. Это соотношение в частотной области имеет дуальное ему во временной области — передачу импульсов (рис. 3.16, б), где прямоугольным участкам полосы соответствуют импульсы вида sine (tIT). Данная ширина полосы определяет минимальное расстояние (на временной оси) между импульсами, необходимое для получения нулевой межсимвольной интерференции.

Пример 4.3. Минимальное расстояние между тонами для ортогональной FSK

Рассмотрим два сигнала и , используемые для некогерентной пере­дачи сигналов FSK, где . Скорость передачи символов равна 1/Т символов/с, где Т — длительность символа, а φ — произвольный постоянный угол между 0 и 2π.

а) Докажите, что минимальное расстояние между тонами для ортогональной передачи сиг­налов FSK с некогерентным обнаружением равно 1/Т.

б) Чему равно минимальное расстояние между тонами для ортогональной передачи сигна­лов FSK с когерентным обнаружением?

Решение

а) Чтобы два сигнала были ортогональными, они должны удовлетворять условию ортого­нальности, которое дается выражением (3.69).

(4.45)

Используя основные тригонометрические соотношения, приведенные в формулах (Г.6)и(ГЛ)-(Г.З), можно переписать выражение (4.4S) в виде

(4.46)

так что

(4.47)

что дает

(4.48)

или

(4.49)

Далее можно предположить, что ; это позволяет записать следующее.

(4.50)

Затем, объединяя выражения (4.49) и (4.50), можем записать следующее.

(4.51)

Отметим, что при произвольной фазе φ выражение (4.51) всегда справедливо, только если и при этом .

Поскольку

и

,

где п и kцелые, условия sin х = 0 и cos x = 1 удовлетворяются одновременно при п = 2k, Следовательно, из формулы (4.51) для произвольного φ можем записать следующее.


или (4.52)

Минимальное расстояние между тонами для ортогональной передачи сигналов FSK с некогерентным обнаружением получаем при к = 1, при этом

(4.53)

Напомним вопрос, сформулированный выше. Имея два тона f1 = 10 000 Гц и f2 = 11 000 Гц, мы спрашивали, являются ли они ортогональными? Теперь у нас достаточно информации для ответа на поставленный вопрос. Ответ связан со скоростью передачи сигналов FSK. Если манипуляция сигналами (переключение сигналов) происходит со скоростью 1 000 символов/с и используется некогерентное обнаружение, то сигналы ортогональны. Если манипуляция происходит быстрее, скажем со скоростью 10 000 симво­лов/с, сигналы не ортогональны.

б) При некогерентном обнаружении, рассмотренном в п. а, расстояние между тонами, пре­вращающее сигналы в ортогональные, было найдено посредством выполнения уравне­ния (4.45) для любой произвольной фазы. В случае когерентного обнаружения расстоя­ние между тонами находится, если положить φ = 0. Причина в том, что мы знаем фазу принятого сигнала (ее дает контур ФАПЧ). Этот принятый сигнал будет коррелировать с каждым опорным сигналом, причем в качестве фазы опорного сигнала используется фа­за принятого сигнала. Уравнение (4.51) можно теперь переписать с учетом φ = 0.

(4.54)

или

(4.55)

Минимальное расстояние между тонами для ортогональной передачи сигналов FSK с когерентным обнаружением получаем при k=l, при этом

(4.56)

Следовательно, при одинаковых скоростях передачи символов когерентное обнаружение требует меньшей ширины полосы, чем некогерентное, обеспечивая при этом ортого­нальную передачу сигналов. Можно сказать, что передача сигналов FSK с когерентным обнаружением более эффективно использует полосу. (Вопрос эффективности использова­ния полосы подробно рассмотрен в главе 9.)

При когерентном обнаружении тоны расположены более плотно, чем при некогерентном, поскольку, если расположить два периодических сигнала так, чтобы их начальные фазы совпадали, ортогональность будет получена автоматически в силу симметрии (четности и нечетности) соответствующих сигналов в течение одного периода передачи символа. Это является отличием от способа получения ортогональности в п. а, где мы не уделяли внимания фазе. В случае когерентного обнаружения регулировка фазы в разря­дах коррелятора означает, что мы можем расположить тоны ближе (по частоте) друг к другу, при этом по-прежнему поддерживая ортогональность в наборе тонов FSK. Вы можете доказать это самостоятельно, изобразив две синусоиды (или косинусоиды, или последовательности прямоугольных импульсов). Начальная фаза всех сигналов должна быть одинаковой (удобнее всего взять ее равной 0 радиан). Используя миллиметровку, выберите удобную временную шкалу для представления одного периода передачи симво­ла Т. Изобразите тон с периодом Т, а затем изобразите другой тон, имеющий такую же начальную фазу, как и предыдущий, и период 2/3T. Выполните численное суммирование произведений тонов (смещенных относительно друг друга на 1/2T) и докажите, что они действительно являются ортогональными.







© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.