Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

4.6.3. Пример демодулятора D8PSK. Теоретические основы цифровой связи

Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.6.3. Пример демодулятора D8PSK

В предыдущем разделе описание квадратурной реализации модулятора начиналось с умножения комплексной огибающей (узкополосного сообщения) на с последующей передачей действительной части произведения s(t), описанного в формуле (4.63). Демодулятор подобной схемы включает обратный процесс, т.е. умножение принятого полосового сигнала на с целью восстановления узкополосного сигнала. В левой части рис. 4.24 в упрощенном виде показан модулятор, изображенный на рис. 4.23, и сигнал , переданный в момент времени k = 2 (продолжаем использовать пример, описанный в предыдущем разделе). В правой части рис. 4.24 показана квадратурная реализация демодулятора.

Рис. 4.24. Пример модулятора/демодулятора

Отметим тонкое отличие между членом в модуляторе и демодуляторе. В модуляторе знак "минус" появляется при определении действительной части комплексного сигнала (произведения комплексной огибающей и комплексной несущей). В демодуляторе член появляется при умножении полосового сигнала на сопряженное несущей модулятора. Демодуляция является когерентной, если фаза восстанавливается. Для упрощения записи основных соотношений процесса мы пренебрегаем шумом. Итак, после синфазного умножения в демодуляторе на в точке А получаем следующий сигнал.

(4.67)

Используя тригонометрические соотношения, приведенные в формулах (Г.7) и (Г.9), получаем следующее.

(4.68)

После фильтрации с использованием фильтра нижних частот (low-pass filter — LPF) в точке А' восстанавливается идеальный отрицательный импульс.

(с точностью до масштабного коэффициента) (4.69)

Подобным образом после квадратурного умножения в демодуляторе на в точке В получаем сигнал.

(4.70)

После прохождения сигналом фильтра нижних частот в точке В' восстанавливается идеальный отрицательный импульс.

(с точностью до масштабного коэффициента) (4.71)

Таким образом, видим, что в точках A' и В' (идеальные) дифференциальные информационные импульсы для синфазного и квадратурного каналов равны -0,707. Поскольку модулятор/демодулятор является дифференциальным, для нашего примера k=2 получаем следующее.

(4.72)

Будем считать, что в предыдущий момент времени k = 1 демодулятор правильно определил, что фаза сигнала равна π. Тогда из формулы (4.72) можем получить следующее.

(4.73)

Вернувшись к таблице модуляции на рис. 4.23, видим, что данной фазе соответствует информационная последовательность = 001, что совпадает с данными, посланными в момент времени k = 2.






Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru