Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.7. Вероятность ошибки в бинарных системах

4.7.1. Вероятность появления ошибочного бита при когерентном обнаружении сигнала BPSK

Важной мерой производительности, используемой для сравнения цифровых схем модуля­ции, является вероятность ошибки, РЕДля коррелятора или согласованного фильтра вычисление РЕможно представить геометрически (см. рис. 4.6). Расчет РЕвключает нахожде­ние вероятности того, что при данном векторе переданного сигнала, скажем si вектор шу­ма n выведет сигнал из области 1. Вероятность принятия детектором неверного решения называется вероятностью символьной ошибки, рE. Несмотря на то что решения принимают­ся на символьном уровне, производительность системы часто удобнее задавать через веро­ятность битовой ошибки (Ps). Связь РВи РЕрассмотрена в разделе 4.9.3 для ортогональной передачи сигналов и в разделе 4.9.4 для многофазной передачи сигналов.

Для удобства изложения в данном разделе мы ограничимся когерентным обнаружением сигналов BPSK. В этом случае вероятность символьной ошибки — это то же самое, что и вероятность битовой ошибки. Предположим, что сигналы равновероят­ны. Допустим также, что при передаче сигнала принятый сигнал r(t) ра­вен , где n(t) — процесс AWGN; кроме того, мы пренебрегаем ухудшением качества вследствие введенной каналом или схемой межсимвольной интерференции. Как показывалось в разделе 4.4.1, антиподные сигналы и можно описать в одномерном сигнальном пространстве, где

(4.74)

Детектор выбирает с наибольшим выходом коррелятора ; или, в нашем случае антиподных сигналов с равными энергиями, детектор, используя формулу (4.20), при­нимает решение следующего вида.

(4.74)

Как видно из рис. 4.9, возможны ошибки двух типов: шум так искажает передан­ный сигнал , что измерения в детекторе дают отрицательную величину z(T), и де­тектор выбирает гипотезу H2, что был послан сигнал s2(t). Возможна также обратная ситуация: шум искажает переданный сигнал , измерения в детекторе дают поло­жительную величину z(T), и детектор выбирает гипотезу Н1, соответствующую предпо­ложению о передаче сигнала .

В разделе 3.2.1.1 была выведена формула (3.42), описывающая вероятность битовой ошибки РB для детектора, работающего по принципу минимальной вероятности ошибки.

(4.76)

Здесь σ0 — среднеквадратическое отклонение шума вне коррелятора. Функция Q(x), называемая гауссовым интегралом ошибок, определяется следующим образом.

(4.77)

Эта функция подробно описывается в разделах 3.2 и Б.3.2.

Для передачи антиподных сигналов с равными энергиями, таких как сигналы в формате BPSK, приведенные в выражении (4.74), на выход приемника поступают следующие компоненты: , при переданном сигнале , и , при переданном сигнале s2(t), где Еь — энергия сигнала, приходящаяся на двоичный символ. Для процесса AWGN дисперсию шума вне коррелятора можно заменить N0/2 (см. приложение В), так что формулу (4.76) можно переписать следующим образом.

(4.78)

(4.79)

Данный результат для полосовой передачи антиподных сигналов BPSK совпадает с полученными ранее формулами для обнаружения антиподных сигналов с использо­ванием согласованного фильтра (формула (3.70)) и обнаружения узкополосных ан­типодных сигналов с применением согласованного фильтра (формула (3.76)). Это является примером описанной ранее теоремы эквивалентности. Для линейных сис­тем теорема эквивалентности утверждает, что на математическое описание процесса обнаружения не влияет сдвиг частоты. Как следствие, использование согласованных фильтров или корреляторов для обнаружения полосовых сигналов (рассмотренное в данной главе) дает те же соотношения, что были выведены ранее для сопоставимых узкополосных сигналов.



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.