***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.7.4. Вероятность появления ошибочного бита при некогерентном обнаружении сигнала в бинарной ортогональной модуляции FSK

Рассмотрим бинарное ортогональное множество равновероятных сигналов FSK , определенное формулой (4.8).

Фаза φ неизвестна и предполагается постоянной. Детектор описывается М = 2 канала­ми, состоящими, как показано на рис. 4.19, из полосовых фильтров и детекторов огибающей. На вход детектора поступает принятый сигнал r(t) = si(t) + n(t), где n(i) — гаус­сов шум с двусторонней спектральной плотностью мощности No/2. Предположим, что и достаточно разнесены по частоте, чтобы их перекрытием можно было пре­небречь. Вычисление вероятности появления ошибочного бита для равновероятных сигналов и начнем, как и в случае узкополосной передачи, с уравнения (3.38).

(4.83)

Для бинарного случая тестовая статистика z(T) определена как . Предположим, что полоса фильтра Wf равна 1/T, так что огибающая сигнала FSK (приблизительно) сохраняется на выходе фильтра. При отсутствии шума в приемнике значение z(T) равно при передаче s1(t) и -при передаче s2(t). Вследствие такой симметрии опти­мальный порог γ0=0. Плотность вероятности подобна плотности вероятности .

(4.84)

Таким образом, можем записать

(4.85)

или

(4.86)

где z1 и z2 обозначают выходы z1(T) и z2(T) детекторов огибающей, показанных на рис.4.19. При передаче тона , т.е. когда r(t) = s2(t) + n(t), выход z1(T) состо­ит исключительно из случайной переменной гауссового шума; он не содержит сигналь­ного компонента. Распределение Гаусса в нелинейном детекторе огибающей дает распределение Релея на выходе [6], так что

(4.87)

где — шум на выходе фильтра. С другой стороны, z2(T) имеет распределение Раиса, поскольку на вход нижнего детектора огибающей подается синусоида плюс шум [6]. Плотность вероятности p(z2\s2) записывается как

(4.88)

где и, как и ранее, — шум на выходе фильтра. Функция 10(х), извест­ная как модифицированная функция Бесселя первого рода нулевого порядка [7], определяется следующим образом.

(4.89)

Ошибка при передаче s2(t) происходит, если выборка огибающей z1(T), полученная из верхнего канала (по которому проходит шум), больше выборки огибающей z2(T), полученной из нижнего канала (по которому проходит сигнал и шум). Таким образом, вероятность этой ошибки можно получить, проинтегрировав до бес­конечности с последующим усреднением результата по всем возможным z2.

(4.91)

Здесь , внутренний интеграл — условная вероятность ошибки, при фиксированном значении z2, если был передан сигнал s2(1), а внешний интеграл усредняет условную вероятность по всем возможным значениям z2. Данный интеграл можно вычислить аналитически [8], и его значение равно следующему.

(4.92)

С помощью формулы (1.19) шум на выходе фильтра можно выразить как


(4.93)

где a Wfширина полосы фильтра. Таким образом, формула (4.92) при­обретает следующий вид.

(4.94)


Выражение (4.94) показывает, что вероятность ошибки зависит от ширины полосы полосового фильтра и РB уменьшается при снижении Wf. Результат справедлив только при пренебрежении межсимвольной интерференцией (intersymbol interference — ISI). Минимальная разрешенная Wf (т.е. не дающая межсимвольной интерференции) полу­чается из уравнения (3.81) при коэффициенте сглаживания г = 0. Следовательно, Wf= R бит/с =1/T, и выражение (4.94) можно переписать следующим образом.

(4.95)

(4.96)

Здесь Еь= (1/2)А2Т — энергия одного бита. Если сравнить вероятность ошибки схем некогерентной и когерентной FSK (см. рис. 4.25), можно заметить, что при равных РB некогерентная FSK требует приблизительно на 1 дБ большего отношения Eb/N0, чем когерентная FSK (для РB < 10-4). При этом некогерентный приемник легче реализует­ся, поскольку не требуется генерировать когерентные опорные сигналы. По этой при­чине практически все приемники FSK используют некогерентное обнаружение. В следующем разделе будет показано, что при сравнении когерентной ортогональной схемы FSK с нёкогерентной схемой DPSK имеет место та же разница в 3 дБ, что и при сравнении когерентной ортогональной FSK и когерентной PSK. Как указывалось ранее, в данной книге не рассматривается амплитудная манипуляция ООК (on-off keying). Все же отметим, что вероятность появления ошибочного бита РB, выраженная в формуле (4.96), идентична РB для некогерентного обнаружения сигналов ООК.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.