***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

4. Полосовая модуляция и демодуляция

4.8.5. Векторное представление сигналов MFSK

В разделе 4.8.3 мы исследовали рис. 4.30, что позволило получить представление о причинах роста вероятности ошибки при увеличении числа k (или М) в схеме MPSK. Полезно будет рассмотреть подобную векторную иллюстрацию для схемы MFSK, которая позволит лучше понять графики на рис. 4.28. Поскольку сигналь­ное пространство MFSK описывается М взаимно перпендикулярными осями, мы без труда можем проиллюстрировать случаи М = 2 и М = 3. Итак, на рис. 4.32, а видим бинарные ортогональные векторы s1, и s2. Граница областей решений раз­бивает сигнальное пространство на две области. На рисунке также показан вектор шума n, представляющий минимальный вектор, который может привести к при­нятию неправильного решения.

Рис. 4.32. Наборы сигналов MFSK для М = 2,3

На рис. 4.32, б показано трехмерное сигнальное пространство со взаимно перпендикулярными координатными осями. В этом случае плоскости решений раз­бивают пространство на три области. Показано, как к каждому сигнальному век­тору прибавляется вектор шума n, представляющий минимальный век­тор, который может привести к принятию неправильного решения. Векторы шума на рис. 4.32, б имеют тот же модуль, что и вектор шума, показанный на рис. 4.32, а. В разделе 4.4.4 мы утверждали, что при данном уровне принятой энергии расстояние между любыми двумя векторами сигналов-прототипов si и sj, М-мерного ортогонального пространства является константой. Отсюда следует, что минимальное расстояние между вектором сигнала-прототипа и любой грани­цей решений не меняется с изменением М. В отличие от модуляции MPSK, когда добавление нового сигнала к сигнальному множеству делало сигналы более уяз­вимыми к меньшим векторам шума, при MFSK такого не происходит.

Дляиллюстрации этого момента можно было бы нарисовать ортогональные пространства высших размерностей, но, к сожалению, это затруднительно. Мы можем использовать только наш "мысленный взгляд", чтобы понять, что увеличение сигнального множества М — путем введения дополнительных осей, причем каждая новая ось перпендикулярна всем существующим — не приводит к его уп­лотнению. Следовательно, переданный сигнал, принадлежащий ортогональному набору, не становится более уязвимым к шуму при увеличении размерности. Фак­тически, как можно видеть из рис. 4.28, 4.28, при увеличении k вероятность появления ошибочного бита даже уменьшается.

Пониманию улучшения надежности при ортогональной передаче сигналов, по­казанного на рис. 4.28, способствует сравнение зависимости вероятности сим­вольной ошибки (РЕ) от ненормированного отношения сигнал/шум (signal-to-noise ratio — SNR) с зависимостью РЕот еь/nq. На рис. 4.33 для когерентной пе­редачи сигналов FSK представлено несколько зависимостей РЕот нормирован­ного SNR. Видим, что ре падает с ростом М. Можем ли мы сказать, что сигнал из ортогонального набора не становится более уязвимым к данному шуму при уве­личении размерности ортогонального набора? Для ортогональной передачи сиг­налов справедливо утверждение, что при данном SNR вектора шума фиксирован­ного размера достаточно для перевода переданного сигнала в область ошибок; следовательно, сигналы не становятся более уязвимыми к меньшим векторам шу­ма при увеличении М. В то же время при росте М вводится большее число окре­стных областей решений; следовательно, увеличивается число возможностей для появления символьной ошибки, всего существует (М- 1) возможностей допустить ошибку. На рис. 4.33 отражено ухудшение РЕв зависимости от ненормированного SNR при увеличении М. Стоит отметить, что изучение зависимости достоверно­сти передачи от М при фиксированном SNR не является лучшим направлением в цифровой связи. Фиксированное SNR означает фиксированный объем энергии на символ; следовательно, при увеличении М этот объем энергии необходимо рас­пределять уже между большим числом битов, т.е. на каждый бит приходится меньше энергии. В этой связи наиболее удобным способом сравнения различных цифровых систем является использование в качестве критерия отношения сиг­нал/шум, нормированного на бит, или . Повышение достоверности передачи с увеличением М (см. рис. 4.28) проявляется только в том случае, если вероятность ошибки изображается как зависимость от . В этом случае при увеличении М отношение , требуемое для получения заданной вероятности ошибки, снижа­ется при фиксированном SNR; следовательно, нам нужен новый график, подоб­ный показанному на рис. 4.28, где ось абсцисс представляет не SNR, a . На рис. 4.34 показано, как зависимость от SNR отображается в зависимость от ; видно, как графики, демонстрирующие ухудшение РЕс увеличением М (подобно представленному на рис. 4.33), преобразуются в графики, показывающие улучше­ние РЕс увеличением М. Само преобразование выполняется согласно соотноше­нию, приведенному в формуле (4.101).

Рис. 4.33. Зависимость вероятности символьной ошибки от SNR для когерентной передани сигналов FSK. (Из до­кумента Bureau of Standards. Technical Note 167, March, 1963; перепечатано с разрешения National Bureau of Standards из Central Radio Propagation Laboratory Tech­nical Note 167, March, 25, 1963, Fig. 1, p. 2.)

Рис. 4.34. Отображение зависимости PE от SNR в зависимость PE от для ортогональной передачи сигналов: а) ненормированная зависимость; б) нормированная зависимость

Здесь W – ширина полосы обнаружения. Поскольку

где Т – длительность символа, можем записать следующее.

(4.103)

При передаче сигналов FSK ширина полосы обнаружения W (в герцах) обычно равна скорости передачи символов 1/Т; другими словами, TW1. Следовательно,

(4.104)

На рис. 4.34 представлено отображение зависимости РЕот SNR в зависимость РЕот для M-мерной ортогональной передачи сигналов с когерентным обнаружением; на осях показано сопоставление величин разных размерностей. На рис. 4.34, а выбра­на рабочая точка, соответствующая отношению сигнал/шум = 10 дБ схемы с k= 1, при данной вероятности ошибки РЕ= 10-3. В той же системе координат приведен график схемы с k= 10; рабочая точка, соответствующая той же величине РЕ= 10-3, теперь соответствует отношению сигнал/шум, равному 13 дБ (приблизительное значение, полученное из рис. 4.33). Из приведенных графиков явно видно снижение достоверно­сти при увеличении k. Чтобы понять, как улучшается производительность, преобразу­ем масштаб оси абсцисс из нелинейного (отношение сигнал/шум в децибелах) в линейный (SNR как коэффициент). На рис. 4.34, а показано, как соотносятся значе­ния SNR в децибелах (10 и 13) со значениями, представленными как коэффициент (10 и 20), для случаев k = 1 и k = 10. Далее преобразуем масштаб оси абсцисс, чтобы единицами измерения служило отношение сигнал/шум, нормированное на бит (также выраженное как коэффициент). Этому случаю на рис. 4.34, а соответствуют величины 10 и 2 для k = 1 и k = 10. Вообще, удобно не различать 1024-ричный символ или сигнал (случай k= 10) и его 10-битовое значение. При таком подходе, если символ требует 20 единиц SNR, то 10 бит, кодирующих этот символ, требуют тех же 20 единиц; другими словами, каждый бит требует двух единиц отношения сигнал/шум.

Вместо подобного сравнения, можно просто отобразить рассматриваемые случаи k= 1 и k= 10 графиками, изображенными на рис. 4.34, б и представляющими зависи­мости РЕот . Случай k= 1 соответствует представленному на рис. 4.34, а. Но для случая k =10 наблюдаем разительные отличия. Видим, что при k=10 передача 10-битового символа требует всего 2 единиц (3 дБ) отношения по сравнению с 10 единицами (10 дБ) для бинарного символа. Действительно, из формулы (4.104) полу­чаем значение отношения = 20 (1/10) = 2 (или 3 дБ), т.е. имеем повышение дос­товерности при увеличении k. В системах цифровой связи достоверность передачи (или вероятность ошибки) всегда выражается через , поскольку такой подход по­зволяет выполнять сравнение производительности различных систем. Графики, при­веденные на рис. 4.33 и 4.34, а, на практике встречаются крайне редко.

Хотя изображенные на рис. 4.33 зависимости и не используются на практике час­то, все же с помощью этого рисунка мы можем понять, почему ортогональная переда­ча сигналов приводит к повышению достоверности при увеличении M или k. Рассмот­рим аналогию — приобретение товара, скажем прессованного творога высшего каче­ства. Выбор качества соответствует выбору точки на оси РЕрис. 4.33, скажем 10-3. Проведем из этой точки горизонтальную линию через все кривые (от M=2 до М = 1024). В бакалейно-гастрономическом отделе мы покупаем самую маленькую упа­ковку прессованного творога, которая содержит 2 унции и стоит $1. Обращаясь к рис.4.33, можем сказать, что такая покупка соответствует пересечению проведенной горизонтальной линии с графиком для М =2. Смотрим вниз на соответствующее зна­чение параметра SNR и называем пересечение с этой осью ценой $1. При следующем походе за покупками мы решаем, что в прошлый раз стоимость творога была высокой — по 50 центов за унцию. Поэтому решаем купить большую упаковку (8 ун­ций) за $2. Обращаемся к рис.4.33 и видим, что данная покупка соответствует пере­сечению горизонтальной линии с кривой М = 8. Смотрим вниз и называем соответст­вующее значение SNR ценой $2. Замечаем, что хотя мы и купили большую емкость, заплатив за нее большую цену, все же стоимость одной унции упала (и составляет те­перь всего 25 центов). Эту аналогию можно продолжать; мы можем приобретать все большие и большие упаковки, при этом их цена (SNR) будет расти, а стоимость за унцию будет падать. Вообще, это известно давно и называется эффектом масштаба: приобретение за раз большого количества товара соответствует закупкам по оптовым ценам; при этом цена единицы товара падает. Подобным образом при использовании ортогональной передачи сигналов с символами, содержащими большее число бит, нам требуется большая мощность (большее отношение SNR), а требования относительно бита () при этом снижаются.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.