Лекции по Теоретическим основам цифровой связи   

5. Анализ канала связи

5.2. Канал

Среда распространения, или электромагнитный тракт связи, соединяющий передатчик и приемник, называется каналом (channel). Вообще, каналы связи могут состоять из проводников, коаксиальных и оптоволоконных кабелей, а также (в случае; передачи в радиодиапа­зоне частот) волноводов, атмосферы или открытого пространства. Для большинства на­земных каналов связи пространство канала проходит через атмосферу. Для спутниковых каналов связи канал, в основном, проходит через открытое пространство. Следует напом­нить, что хотя некоторые атмосферные явления происходят на высоте до 100 км, основная часть атмосферы лежит все же ниже 20 км. Следовательно, на атмосферу приходится толь­ко небольшая часть (0,05%) общей длины (35 800 км) тракта связи. Большая часть предла­гаемой главы представляет анализ канала связи в контексте подобной спутниковой связи. Вопросы наземных беспроводных каналов связи будут рассмотрены в главе 15.

5.2.1. Понятие открытого пространства

Понятие открытого пространства (free space) подразумевает канал, свободный от любых помех распространению в диапазоне радиочастот, таких как поглощение, отражение, пре­ломление или дифракции. Если часть канала приходится на атмосферу, эта часть должна быть однородной и удовлетворять всем указанным условиям. Предполагается, что земля находится бесконечно далеко (или что ее коэффициент отражения пренебрежимо мал). Предполагается также, что энергия, передаваемая на радиочастотах, является функцией только расстояния от передатчика (и, как в оптике, подчиняется закону обратных квадра­тов). Каналы открытого пространства описывают идеальный тракт распространения ра­диочастот; на практике распространение через атмосферу и возле поверхности земли под­вержено поглощению, отражению, дифракции и рассеиванию, что корректирует передачу в открытом пространстве. Атмосферное поглощение рассмотрено в последующих разделах. Отражение, дифракция и рассеивание, которые имеют важную роль в определении произ­водительности наземной связи, рассмотрены в главе 15. Кроме того, всестороннее обсуж­дение этих вопросов представлено в работе [1].

5.2.2. Снижение достоверности передачи

В главе 3 было установлено, что существует две основные причины снижения достоверно­сти передачи. Первая — это уменьшение отношения сигнал/шум. Вторая — это искажение сигнала, которое может быть вызвано межсимвольной интерференцией (intersymbol inter­ference — ISI). В главах 3 и 15 рассматриваются определенные методы выравнивания, уменьшающие последствия ISI. В данной главе мы обсудим "бухгалтерию" усиления и рассеивания мощности сигнала. В бюджет канала мы не будем включать межсимвольную интерференцию, поскольку ее особенностью является то, что повышение мощности сиг­нала не всегда устраняет искажение, вызванное ISI (см. раздел 3.3.2.)

Для цифровой связи вероятность ошибки зависит от отношения в приемни­ке, определенного в формуле (3.30) следующим образом.

Другими словами, это мера нормированного отношения сигнал/шум (S1N или SNR). Если не оговорено противное, под SNR подразумевается отношение средней мощ­ности сигнала к средней мощности шума. Сигналом может быть информационный сигнал, узкополосная волна или модулированная несущая. Уменьшение SNR может происходить двумя способами: (1) путем снижения желаемой мощности сигнала и (2) посредством по­вышения мощности шума или мощности сигналов, интерферирующих с полезным сигналом. Эти механизмы будем называть, соответственно, ослаблением (или потерями) и шумом (или интерференцией). Ослабление происходит при поглощении, отклонении или отраже­нии части сигнала при его прохождении к заданному приемнику; таким образом, часть переданной энергии не доходит до пункта назначения. Существует несколько источников электрических шумов и интерференции, возникающих вследствие различных механиз­мов, — тепловой шум, галактический шум, атмосферные помехи, помехи от коммутирую­щих элементов, перекрестные помехи и интерферирующие сигналы от других источников. При промышленном использовании термины потеря и шум част не различаются, по­скольку их эффект на систему одинаков.

5.2.3. Источники возникновения шумов и ослабления сигнала

На рис. 5.1 представлена блочная диаграмма спутникового канала связи с источниками возникновения шумов и ослабления сигнала. На данном рисунке механизмы ослабления (или потерь) сигнала показаны затененными, а источники шума — штрихованными пря­моугольниками. Источники, ослабляющие сигнал и вносящие шум, представлены сетча­тыми прямоугольниками. Ниже приводится перечень источников (21 наименование) ухудшения качества передачи, в котором описаны важнейшие "вкладчики" в ухудшение отношения SNR. Нумерация списка соответствует нумерации, приведенной на рис. 5.1

1. Потери, связанные с ограничением полосы. Все системы используют в передатчике фильтры для передачи энергии в ограниченной или выделенной полосе. Это по­зволяет исключить интерференцию с сигналами других каналов или пользовате­лей, а также удовлетворить требования органов государственного регулирования. Подобная фильтрация уменьшает общее количество передаваемой энергии; ре­зультат — ослабление сигнала.

2. Межсимвольная интерференция (intersymbol interferenceISI). Как показывалось в главе 3, фильтрация в системе — передатчике, канале и приемнике — может привести к межсимвольной интерференции. Принятые импульсы перекрывают­ся; хвост одного импульса "размывается" на соседние символьные интервалы, что мешает процессу обнаружения. Даже при отсутствии теплового шума, неиде­альная фильтрация, ограничение полосы системы и замирание в каналах приво­дят к возникновению межсимвольной интерференции.

3. Фазовый шум гетеродина. При использовании в процессе смешения сигналов ге­теродина, случайное смешение фазы добавляет к сигналу фазовый шум. При ис­пользовании в корреляционном приемнике опорного сигнала случайное смеще­ние фазы может привести к уменьшению возможностей детектора, а следова­тельно, к ослаблению сигнала. В передатчике случайное смещение фазы может привести к размыванию полосы выходного сигнала, которая затем будет ограни­чена выходным фильтром, что приведет к ослаблению сигнала.

4. Преобразование амплитудной модуляции в фазовую (АМ/РМ conversion). Данное пре­образование — это явление фазового шума, проявляющееся в нелинейных уст­ройствах, таких как лампа бегущей волны (traveling-wave tube — TWT, ЛБВ). Флуктуации амплитуды сигнала (амплитудная модуляция) порождают колебания фазы, вносящие фазовый шум в сигналы, которые выделяются с помощью коге­рентного детектирования. Преобразование амплитудной модуляции в фазовую также может приводить к возникновению дополнительных боковых полос, что вызывает ослабление сигнала.

5. Усиление или ослабление на ограничителе. Ограничитель с резким порогом может усилить более мощный из двух сигналов и подавить более слабый; это может привести как к усилению, так и к ослаблению сигнала [2].

6. Интермодуляционные (М) составляющие, возникающие в результате взаимодействия нескольких несущих. Когда несколько сигналов, которые передаются на разных не­сущих частотах, одновременно присутствуют в нелинейном устройстве, таком, на­пример, как ЛБВ, может возникнуть мультипликативное взаимодействие между частотами несущих, что может привести к возникновению комбинационных сиг­налов суммарных и разностных частот. Перераспределение энергии между этими паразитными сигналами (интермодуляционные, или 1М-составляющие) представ­ляет потерю энергии сигнала. Кроме того, если эти IM-составляющие появляются в частотной области того или другого полезного сигнала, это приводит к увеличе­нию уровня шума для соответствующего сигнала.

7. Модуляционные потери. Бюджет канала связи — это расчет принятой полезной мощности (или энергии). Полезной считается только та мощность, которая свя­зана с сигналами, переносящими информацию. Достоверность передачи является функцией удельной энергии, приходящейся на один символ. Любая мощность, используемая для передачи несущей, отличной от той, что модулирует сигнал (символы), представляет потери модуляции. (Стоит, правда, отметить, что энер­гия несущей может использоваться для обеспечения синхронизации.)

8. Эффективность антенны. Антенны — это преобразователи, превращающие элек­тронные сигналы в электромагнитные поля и наоборот. Кроме того, они исполь­зуются для фокусировки электромагнитной энергии в заданном направлении. Чем больше апертура (поверхность) антенны, тем выше результирующая плот­ность мощности сигнала в заданном направлении. Эффективность антенны опи­сывается отношением ее эффективной апертуры К физической. Механизмы, приводящие к снижению эффективности (уменьшению интенсивности сигнала), называются убыванием амплитуды, затенением апертуры, рассеиванием, переизлучением, приемом паразитных сигналов, дифракцией по краям и потерями вследствие диссипации [3]. Типичная эффективность, получаемая при суммар­ном воздействии всех названных механизмов, равна порядка 50-80%.

9. Ослабление и шум на обтекателе. Обтекатель — это специальная оболочка, при­меняемая для некоторых антенн в целях защиты от погодных воздействий. Обте­катель, находящийся на пути сигнала, будет рассеивать и поглощать некоторую энергию сигнала, что приведет к ослаблению сигнала. Основной закон физики утверждает, что тело, способное поглощать энергию, также излучает энергию (при температуре свыше 0 К). Часть этой энергии приходится на полосу прием­ника и вносит посторонний шум.

10. Потеря наведения. Если передающая либо принимающая антенна направлена неидеально, существует возможность потери сигнала.

11. Поляризационные потери. Поляризация электромагнитного поля определяется как направление в пространстве, вдоль "которого лежат силовые линии поля, а поля­ризация антенны описывается поляризацией ее поля излучения. При неверном согласовании передающей и принимающей антенн сигнал может ослабляться.

12. Атмосферные помехи и шум атмосферы. Атмосфера отвечает за ослабление сигнала, а также вносит нежелательные помехи. Основная часть атмосферы лежит ниже высоты 20 км; но даже в пределах этого относительно короткого пути работают важные ме­ханизмы потерь и шумов. На рис. 5.2 приведены теоретические графики односто­роннего поглощения по направлению к зениту. Зависимости приведены для не­скольких высот (начиная с уровня моря — 0 км) для составляющих водяного пара с плотностью 7,5 г/м3 возле земной поверхности. Величина ослабления сигнала вследст­вие поглощения кислородом (О2) и водяными парами показана как функция несу­щей частоты. Локальные максимумы поглощения расположены в окрестности 22 ГГц (водяной пар), 60 и 120 ГГц (О2). Также стоит отметить, что атмосфера вносит в ка­нал энергию шумов. Как и в случае обтекателя, молекулы, поглощающие энергию, также излучают энергию. Молекулы кислорода и водяного' пара излучают шум по всему спектру радиочастот. Часть этого шума, приходящаяся на полосу данной сис­темы связи, ухудшает ее отношение сигнал/шум. Ливень является основной атмо­сферной причиной ослабления сигнала и основным фактором, вносящим шум. Чем он интенсивнее, тем большую энергию сигнала он поглотит. Кроме того, в дождливый день через луч антенны, направленный на приемник, проходит больше атмосферных шумов, чем в ясный день. Вообще, атмосферные помехи— это относительно об­ширная тема, и мы еще вернемся к ней в следующих разделах.

Рис. 5.2. Теоретическое вертикальное одностороннее поглощение от заданной высоты до верхней границы атмосферы для водяного пара плотностью 7,5 г/м3 на поверхности. (Поглощение дождем или облаками не учитывается.) (Перепечатано с разрешения Национального комитета по аэронавтике и исследованию космического пространства из NASA Reference Publication 1082(03), "Propagation Effects Handbook for Satellite Systems Design", June, 1983, Fig. 6.2-1, p. 218.)

13. Пространственные потери. Интенсивность электрического поля, а следовательно, и интенсивность сигнала (плотности мощности или плотности потока мощно­сти) уменьшаются с расстоянием. Для канала спутниковой связи пространствен­ные потери — это наибольшие потери, вызванные одним фактором, приводящим к ослаблению в системе (данный фактор отнесен к ослаблению сигнала, потому что не вся излучаемая энергия фокусируется на целевой принимающей антенне).

14. Помехи соседнего канала (adjacent channel interference — ACI). Эта интерференция характе­ризуется нежелательными сигналами, которые поступают, из других частотных кана­лов, или энергией, привносимой в интересующий нас канал. Возможность такого "заползания" соседнего сигнала определяется модуляционным спектральным сгла­живанием, а также шириной и формой основного спектрального лепестка сигналов.

15. Внутриканальная интерференция. Данной интерференцией называется ухудшение качества, вызванное интерферирующими сигналами, которые появляются в пре­делах полосы частот сигнала. Она может вноситься по-разному, например, по­средством случайных передач, недостаточного разграничения вертикальной и го­ризонтальной поляризации или приема паразитных сигналов боковым лепестком антенны (низкоэнергетическим лучом, окружающим основной луч антенны). Кроме того, Внутриканальная интерференция может вноситься другими пользо­вателями данного спектра.

16. Комбинационные помехи. Интермодуляционные составляющие, описанные в п. 6, происходят от сигналов с множественными несущими, взаимодействующими в нелинейном устройстве. Подобные составляющие иногда называются активной взаимной модуляцией; как говорилось в п. 6, они могут либо приводить к потере энергии сигнала, либо быть причиной внесения в канал шума. В данном пункте мы имеем дело с пассивной взаимной модуляцией; это явление вызывается взаимо­действием сигналов с множественными несущими, имеющими нелинейные ком­поненты на выходе передатчика. Эти нелинейности обычно появляются на пере­сечении соединительных звеньев волноводов, корродированных поверхностях и поверхностях с плохим электрическим контактом. Электромагнитные поля зна­чительной мощности, имеющие диодоподобную характеристику (рабочий потен­циал), порождают мультипликативные составляющие, а следовательно, — поме­хи. Если подобные помехи будут излучаться на близлежащую принимающую ан­тенну, они могут серьезно ухудшить качество функционирования приемника.

17. Галактический или космический шум, звездный шум и шум побережья. Все небес­ные тела, такие как звезды и планеты, излучают энергию. Подобная энергия шума, поступающая в зону обзора антенны, отрицательно сказывается на отно­шении сигнал/шум.

18. Потери в фидере. Уровень принятого сигнала может быть крайне мал (например, 10-12 В); следовательно, он может быть особенно чувствителен к воздействию шума. По этой причине в начале приемника находится область, где прилагаются значитель­ные усилия, чтобы максимально снизить уровень шума, пока сигнал не будет в дос­таточной степени усилен. Волновод или кабель (фидер) между принимающей антен­ной и собственно приемником не только приводит к поглощению сигнала, но и вно­сит тепловой шум; подробно об этом рассказывается в разделе 5.5.3.

19. (Собственный) шум приемника. Это тепловой шум, порождаемый приемником; подробно этот вопрос рассмотрен в разделах 5.5.1-5.5.4.

20. Потери аппаратной реализации. Эти потери представляют собой разность между теоретической эффективностью обнаружения и реальной, определяемой несо­вершенством системы: ошибками синхронизации, уходом частоты, конечными временами нарастания и спада сигналов и конечнозначной арифметикой.

21. Неидеальная синхронизация. Если фаза несущей, фаза поднесущей и синхрониза­ция символов организованы идеально, вероятность ошибки представляет собой однозначную функцию отношения , рассмотренную в главах 3 и 4. К сожа­лению, названные величины реализуются не идеально, что приводит к потерям.



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.