5.5.5. Эффективная температура системы

Лекции по Теоретическим основам цифровой связи   

5. Анализ канала связи

5.5.5. Эффективная температура системы

На рис. 5.18 представлена упрощенная схема принимающей системы, причем указаны те области (антенна, линия связи и предварительный усилитель), которые играют ос­новную роль в ухудшении параметра SNR. Влияние предварительного усилителя уже обсуждалось ранее — оно заключается во введении в линию дополнительного шума. Также рассматривались потери в линии — сигнал поглощается при фиксированном уровне шума (если температура линии меньше (или равна) температуры источника). Оставшиеся источники ухудшения качества сигнала могут быть как естественными, так и искусственными. Естественные источники — это молнии, небесные источники радиоизлучения, атмосферные источники и тепловое излучение от земли и других фи­зических структур. Искусственные — это излучение от автомобильных систем зажига­ния и других электрических приборов, а также радиопередача от других пользовате­лей, использующих ту же полосу, что и приемник. Общий объем шума, вносимого перечисленными внешними источниками, можно описать как , где является температурой антенны. Антенна подобна линзе: вносимый ею шум определяется тем, "на что смотрит антенна". Если антенна нацелена на прохладную область неба, вво­дится крайне малый объем теплового шума. Температура антенны — это мера эффек­тивной температуры, проинтегрированной по всей поверхности антенны.

Рис. 5.18. Основные источники шума прини­мающей системы

Теперь мы можем определить температуру системы Ts°, сложив все вклады в шум системы (выраженные через эффективную температуру). Суммарное выражение вы­глядит следующим образом.

(5.45)

Здесь, ТА° — температура антенны, а Tо6ш° — общая температура линии и предвари­тельного усилителя. В уравнении (5.45) указаны два основных источника шума и ин­терференции, вызывающие ухудшение качества работы приемника. Один источник, описываемый членом ТА°, представляет ухудшение работоспособности, навязываемое "внешним миром", проходящим через антенну. Второй источник, описываемый чле­ном Tо6ш°, — это тепловой шум, вызванный движением электронов во всех проводни­ках. Поскольку температура системы TS° — это новая суммарная температура, вклю­чающая ТА° и суммарную эффективную температуру линии и предварительного уси­лителя, может возникнуть вопрос: почему уравнение (5.45) не содержит тех же множителей последовательного уменьшения, что и в уравнении (5.41)? Мы предпо­лагаем, что антенна не имеет диссипативных частей; ее коэффициент усиления, в от­личие от усилителя или аттенюатора, может рассматриваться как коэффициент рас­ширения спектра сигнала. Какая бы эффективная температура не вводилась при про­ходе через антенну, это не зависит от самой антенны; антенна представляет шум источника (или температуру источника) на входе линии.

Используя уравнение (5.44), мы можем модифицировать уравнение (5.45) следую­щим образом.

(5.46)

(5.47)

Если LF выражено в децибелах, мы должны вначале изменить его размерность, и Ts° приобретет следующий вид.

Уравнения (5.45)-(5.47) описывают температуру системы ТS на оконечных устрой­ствах принимающей антенны, а уравнения (5.10) и (5.11) — мощность Рr, полученную принимающей антенной. Данные определения используются в этой главе; кроме того, их предпочитают разработчики систем, антенн, а также люди, работающие на пере­дающей стороне линии. Важно отметить, что существует альтернативный набор опре­делений, используемых разработчиками систем, которые предпочитают описывать температуру системы и принятую мощность входе приемника. Если предпо­ложить, что антенна и приемник связаны устройством, которое не сложнее линии с потерями, то параметры Ts и отличаются в L раз (напомним, что L— коэффициент потерь в линии). Иными словами, . При вычис­лении принятого SNR (определяемого в следующем разделе) с помощью определений принятой мощности и температуры системы, соотнесенных с приемником, результат не будет отличаться от того, который был получен при использовании определений, связанных со входом приемника. Причина в том, что множитель L входит и в числи­тель, и в знаменатель отношения SNR, поэтому он просто сокращается.

Пример 5.5. Шум-фактор и температура шума

На входе приемника, показанном на рис. 5.19, а, шум-фактор равен 10 дБ, усиление равно 80 дБ, а ширина полосы — 6 МГц. Мощность сигнала на входе Si равна 10-11 Вт. Допустим, что потери в линии отсутствуют и температура антенны равна 150 К. Найдите ТR°, ТS°, Nout, (SNR)in и (SNR)out.

а)

б)

Рис. 5.19. Улучшение входного каскада приемника за счет малошумя­щего предварительного усилителя

Решение

Вначале преобразуем все значения в децибелах в размерные величины.

ТR° = (F- 1)290 К = 2610 К

изолированного уравнения (3.40) при L= 1 для малошумящей линии дает следующее.

= 1,2 мкВт (вклад от источника) + 21,6 мкВт (вклад от входного каскада) = 22,8 мкВт

Заметим, что в приведенном примере шум усилителя значительно больше шума источника и является основной причиной ухудшения параметра SNR.

Пример 5.6. Улучшение параметра SNR с помощью малошумящего предварительного усилителя

Используйте предварительный усилитель, как показано на рис. 5.19, б, с шум-фактором 3 дБ, усилением 13 дБ и шириной полосы 6 МПц для улучшения SNR приемника, описан­ного в примере 5.5. Определите объединения предварительного усилителя и приемни­ка. Найдите и (SNR)out. Потери в линии будем считать нулевыми.

Решение

Как и ранее, вначале все значения, выраженные в децибелах, приводятся к размерному виду.

= 24,8 мкВт (вклад источника) + 69,6 мкВт (вклад входного каскада) = 94,4 мкВт

Итак, при добавлении предварительного усилителя выходной шум увеличивается (с 22,8 мкВт в примере 5.5) до 94,4 мкВт. И все же, несмотря на увеличение мощности шума, более низкая тем­пература системы приводит к улучшению параметра SNR на 6,9 дБ (с 16,4 дБ в примере 5.5 до 23,3 дБ в данном примере). Цена, которую мы платим за это улучшение, — необходимость улуч­шения fo&u на 6 дБ (с 10 дБ в примере 5.5 до.4 дБ в данном примере).

Нежелательный Шум частично вносится посредством антенны (KTA°W) и час­тично генерируется внутренне в входном каскаде приемника (кТ06ш°W). Объем улучшения системы, который может дать проектирование входного каскада, зави­сит от того, какая часть общего шума вносится входным каскадом. Из примера 5.5 мы видели, что входной каскад вносит большую часть шума. Следовательно, как было сделано в примере 5.6, обеспечение малошумящего предварительного усили­теля значительно улучшает системное отношение сигнал/шум (SNR). В следую­щем примере рассматривается, когда большая часть шума вносится посредством антенны; мы увидим, что в этом случае введение малошумящего предваритель­ного усилителя не дает ощутимого улучшения параметра SNR.

Пример 5.7. Попытка улучшения SNR при больших значениях ТA°

Повторите примеры 5.6 и 5.5 с единственным изменением: пусть тA° =8000 К. Другими сло­вами, большая часть шума теперь вносится антенной; допустим, все поле зрения антенны заполняет очень горячее тело (солнце). Вычислите улучшение параметра SNR, которое дает­ся предварительным усилителем, использованным в примере 5.6 (рис. 5.19, б), после чего сравните результат с ответом примера 5.6.

Решение

Без предварительного усилителя

= 66,2 мкВт (вклад источника) + 21,6 мкВт (вклад входного каскада) = 87,8 мкВт

С предварительным усилителем

= 1324,8 мкВт (вклад источника) + 69,6 мкВт (вклад входного каскада)=1394,4 мкВт

Таким образом, в данном случае улучшение параметра SNR равно всего 1 дБ, что значи­тельно меньше полученных ранее 6,9 дБ. Если основные источники шума находятся внутри приемника, улучшить SNR можно за счет введения малошумящих устройств. В то же время, если основные источники шума являются внешними, то улучшение входного каскада при­емника не имеет существенного значения.

Шум-фактор — это определение, основанное на использовании эталонного значения 290 К. Если температура источника отличается от 290К, как в приме­рах 5.5—5.7, то необходимо определить рабочий или эффективный шум-фактор, описывающий реальную зависимость между (SNR)in и (SNR)out. Если в качестве от­правной точки использовать уравнения (5.25) и (5.27), рабочий шум-фактор мож­но выразить следующим образом.

(5.48)









© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.
E-mail: formyneeds@yandex.ru