6.4.2. Векторные подпространства

Лекции по Теоретическим основам цифровой связи   

6. Канальное кодирование: часть 1

6.4.2. Векторные подпространства

Подмножество S векторного пространства Vn называется подпространством, если для него выполняются следующие условия.

1.  Множеству S принадлежит нулевой вектор.

2.  Сумма любых двух векторов в S также принадлежит S (свойство замкнутости).

При алгебраическом описании линейных блочных кодов данные свойства являются фундаментальными. Допустим, Vi и Vj — два кодовых слова (или кодовых вектора) в двоичном блочном коде (n, k). Код называется линейным тогда и только тогда, когда (Vi  Vj) также является кодовым вектором. Линейный блочный код — это такой код, в котором вектор, не принадлежащий подпространству, нельзя получить путем сложения любых кодовых слов, принадлежащих этому подпространству.

Например, векторное пространство V4 состоит из следующих шестнадцати 4-кортежей.

0000      0001       0010           0011            0100           0101           0110           0111

1000      1001       1010           1011            1100           1101           1110           1111

Примером подмножества V4, являющегося подпространством, будет следующее.

 0000             0101            1010            1111

Легко проверить, что сложение любых двух векторов подпространства может дать в итоге лишь один из векторов подпространства. Множество из 2k n-кортежей называется линейным блочным кодом тогда и только тогда, когда оно является подпространством векторного пространству Vn всех n-коргежей. На рис. 6.10 показана простая геометрическая аналогия, представляющая структуру линейного блочного кода. Векторное пространство Vn можно представить как составленное из 2n n-кортежей. Внутри этого векторного пространства существует подмножество из 2k л-кортежей, образующих подпространство. Эти 2k вектора или точки показаны разбросанными среди более многочисленных 2n точек, представляющих допустимые или возможные кодовые слова. Сообщение кодируется одним из 2k возможных векторов кода, после чего передается. Вследствие наличия в канале шума приниматься может измененное кодовое слово (один из 2n векторов пространства n-кортежей). Если измененный вектор не слишком отличается (лежит на небольшом расстоянии) от действительного кодового слова, декодер может обнаружить сообщение правильно. Основная задача выбора конкретной части кода подобна цели выбора семейства модулирующих сигналов, и в контексте рис. 6.10 ее можно определить следующим образом.

Рис. 6.10. Структура линейного блочного кода

1.  Наполняя пространство Vn максимальным количеством кодовых слов, мы боремся за эффективность кодирования. Это равносильно утверждению, что мы хотим ввести лишь небольшую избыточность (избыток полосы).

2.  Мы хотим, чтобы кодовые слова были максимально удалены друг от друга, так что даже если векторы будут искажены в ходе передачи, их все еще можно будет с высокой вероятностью правильно декодировать.







© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.