***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

6. Канальное кодирование: часть 1

6.4.8. Исправление ошибок

Итак, мы обнаружили отдельную ошибку и показали, что контроль с помощью синдромов, выполняемый как на искаженном кодовом слове, так и на соответствующей ошибочной комбинации, дает один и тот же синдром. Этот момент является ключевым, поскольку мы имеем возможность не только определить ошибку, но и (поскольку существует взаимно однозначное соответствие между исправимой ошибочной комбинацией и синдромом) исправить подобные ошибочные комбинации. Давайте так расположим 2" л-кортежей, которые представляют собой возможные принимаемые векторы, в так называемой нормальной матрице, чтобы первый ряд содержал все кодовые слова, начиная с кодового слова с одними нулями, а первый столбец — все исправимые ошибочные комбинации. Напомним, что в число основных свойств линейного кода входит то, что набор кодовых слов должен содержать член в виде вектора, состоящего из одних нулей. Каждая строка сформированной матрицы, именуемая классом смежности, состоит из ошибочной комбинации в первом столбце, называемой образующим элементом класса смежности, за которой следуют кодовые слова, подвергающиеся воздействию этой ошибочной комбинации. Нормальная матрица для кода (и, k) имеет следующий вид.

                           (6.38)

Отметим, что кодовое слово U1 (кодовое слово со всеми нулями) имеет два значения. Оно является кодовым словом, а также может рассматриваться как ошибочная комбинация е, — комбинация, означающая отсутствие ошибки, так что r = U. Матрица содержит все 2n n-кортежей, имеющихся в пространстве Vn. Каждый n-кортеж упомянут только один раз, причем ни один не пропущен и не продублирован. Каждый класс смежности содержит 2k n-кортежей. Следовательно, всего классов смежности будет (2n/2k) = 2n-k.

Алгоритм декодирования предусматривает замену искаженного вектора (любого п-кортежа, за исключением указанного в первой строке) правильным кодовым словом, указанным вверху столбца, содержащего искаженный вектор. Предположим, что кодовое слово Ui (i = 1,..., 2k) передано по каналу с помехами, в результате чего принят (искаженный) вектор Ui + еj. Если созданная каналом ошибочная комбинация еj является образующим элементом класса смежности с индексом j = 1,...,2n-k, принятый вектор будет правильно декодирован в переданное кодовое слово Ui. Если ошибочная комбинация не является образующим элементом класса, то декодирование даст ошибочный результат.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.