7.2.1. Представление связи

Лекции по Теоретическим основам цифровой связи   

7. Канальное кодирование: часть 2

7.2. Представление сверточного кодера

Чтобы иметь возможность описывать сверточный код, необходимо определить кодирующую функцию G(m) так, чтобы по данной входящей последовательности m можно было быстро вычислить выходную последовательность U. Для реализации сверточного кодирования используется несколько методов; наиболее распространенными из них являются графическая связь, векторы, полиномы связи, диаграмма состояния, древовидная и решетчатая диаграммы. Все они рассматриваются ниже.

7.2.1. Представление связи

При обсуждении сверточных кодеров в качестве модели будем использовать сверточный кодер, показанный на рис. 7.3. На этом рисунке изображен сверточный кодер (2,1) с длиной кодового ограничения K = 3. В нем имеется n =2 сумматора по модулю 2; следовательно, степень кодирования кода k/n равна 1/2. При каждом поступлении бит помещается в крайний левый разряд, а биты регистра смещаются на одну позицию вправо. Затем коммутатор на выходе дискретизирует выходы всех сумматоров по модулю 2 (т.е. сначала верхний сумматор, затем нижний), в результате чего формируются пары кодовых символов, образующих ответвленное слово, связанное с только что поступившим битом. Эта выполняется для каждого входного бита. Выбор связи между сумматорами и разрядами регистра влияет на характеристики кода. Всякое изменение в выборе связей приводит в результате к различным кодам. Связь, конечно же, выбирается и изменяется не произвольным образом. Задача выбора связей, дающая оптимальные дистанционные свойства, сложна и в общем случае не решается; однако для всех значений длины кодового ограничения, меньших 20, с помощью компьютеров были найдены хорошие коды [3-5].

В отличие от блочных кодов, имеющих фиксированную длину слова n, в сверточных кодах нет определенного размера блока. Однако с помощью периодического отбрасывания сверточным кодам часто принудительно придают блочную структуру. Это требует некоторого количества нулевых разрядов, присоединенных к концу входной последовательности данных, которые служат для очистки (или промывки) регистра сдвига от бит данных. Поскольку добавленные нули не несут дополнительной информации, эффективная степень кодирования будет ниже k/n. Чтобы степень кодирования оставалась близкой к k/n, период отбрасывания чаще всего делают настолько большим, на сколько это возможно.

Рис. 7.3. Сверточный кодер (степень кодирования 1/2, К= 3)

Один из способов реализации кодера заключается в определении п векторов связи, по одному на каждый из п сумматоров по модулю 2. Каждый вектор имеет размерность K и описывает связь регистра сдвига кодера с соответствующим сумматором по модулю 2. Единица на i-й позиции вектора указывает на то, что соответствующий разряд в регистре сдвига связан с сумматором по модулю 2, а нуль в данной позиции указывает, что связи между разрядом и сумматором по модулю 2 не существует. Для кодера на рис. 7.2 можно записать вектор связи для верхних связей, а для нижних.

Предположим теперь, что вектор сообщения m = 1 0 1 закодирован с использованием сверточного кода и кодера, показанного на рис. 7.3. Введены три бита сообщения, по одному в момент времени , как показано на рис. 7.4. Затем для очистки регистра в моменты времени и введены нуля, что в результате приводит к смещению конечного участка на всю длину регистра. Последовательность на выходе выглядит следующим образом: 1110001011, где крайний левый символ представляет первую передачу. Для декодирования сообщения нужна полная последовательность на выходе (включающая кодовые символы). Для удаления сообщения из кодера требуется на единицу меньше нулей, чем имеется разрядов в регистре, или очищенных бит. В момент времени показан нулевой выход, это должно дать читателю возможность убедиться в том, что в момент времени регистр устанавливается в исходное состояние. Таким образом, в момент времени уже можно передавать новое сообщение.









© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.
E-mail: formyneeds@yandex.ru