***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

8. Канальное кодирование: часть 3

8.1.1. Вероятность появления ошибок для кодов Рида-Соломона

Коды Рида-Соломона чрезвычайно эффективны для исправления пакетов ошибок, т.е. они оказываются эффективными в каналах с памятью. Также они хорошо зарекомендовали себя в каналах с большим набором входных символов. Особенностью кода Рида-Соломона является, то, что к коду длины n можно добавить два информационных символа, не уменьшая при этом минимального расстояния. Такой расширенный код имеет длину п + 2 и то же количество символов контроля четности, что и исходный код. Из уравнения (6.46) вероятность появления ошибки в декодированном символе, РЕ, можно записать через вероятность появления ошибки в канальном символе, .

(8.7)

Здесь t количество ошибочных битов в символе, которые может исправить код, а символы содержат т битов каждый.

Для некоторых типов модуляции вероятность битовой ошибки можно ограничить сверху вероятностью символьной ошибки. Для модуляции MFSK с М= связь РВи РЕвыражается формулой (4.112).

(8.8)

На рис. 8.1 показана зависимость от вероятности появления ошибки в канальном символе p, полученная из уравнений (8,7) и (8.8) для различных ортогональных 32-ричных кодов Рида-Соломона с возможностью коррекции t ошибочных бит в символе и n = 31 (тридцать один 5-битовый символ в кодовом блоке). На рис.8.2 показана зависимость от /N0 для таких систем кодирования при использовании модуляции MFSK и некогерентной демодуляции в канале AWGN [2]. Для кодов Рида-Соломона вероятность появления ошибок является убывающей степенной функцией длины блока, n, а сложность декодирования пропорциональна небольшой степени длины блока [1]. Иногда коды Рида-Соломона применяются в каскадных схемах. В таких системах внутренний сверточный декодер сначала осуществляет некоторую защиту от ошибок за счет мягкой схемы решений на выходе демодулятора; затем сверточный декодер передает данные, оформленные согласно жесткой схеме, на внешний декодер Рида-Соломона, что снижает вероятность появления ошибок. В разделах 8.2.3 и 8.3 мы рассмотрим каскадное декодирование и декодирование Рида-Соломона на примере системы цифровой записи данных на аудиокомпакт-дисках (compact disc — CD).

Рис. 8.1. Зависимость Рв от р для различных ортогональных 32-ринных кодов Рида-Соломона с возможностью коррекции t бит в символе и п = 31.(Перепечатано с разрешения автора из Data Communications, Network, and Systems, ed. Thomas C, Bartee, Howard W. Sams Company,Indianapolis,Ind., 1985, p. 311. Ранее публиковалось в J. P. Odenwalder, Error Control Coding Handbook, M/A-COM LINKABIT, Inc., San Diego, Calif., . ./ - . July,15, 1976,p.

Рис. 8.2. Зависимость рв от Et/NQ для различных ортогональных кодов Рида-Соломона с возможностью коррекции t бит в символе и п = 31, при 32-ринной модуляции MFSK в канале AWGN. (Перепечатано с разрешения автора из Data Communications, Network, and Systems, ed. Thomas C. Bartee, Howard W. Sams Company, Indianapolis, Ind.f 1985, p. 312. Ранее публиковалось в J. P. Odenwalder, Error Control Coding Handbook, M/A-COM LINKABIT, Inc., San Diego, Calif., July, 15, 1976, p. 92.)




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.