***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

8. Канальное кодирование: часть 3

8.1.2. Почему коды Рида-Соломона эффективны при борьбе с импульсными помехами

Давайте рассмотрим код (n, k) = (255, 247), в котором каждый символ состоит из т = 8 бит (такие символы принято называть байтами). Поскольку п-k=8, из уравнения (8.4) можно видеть, что этот код может исправлять любые 4-символьные ошибки в блоке длиной до 255. Пусть блок длительностью 25 бит в ходе передачи поражается помехами, как показано на рис. 8.3. В этом примере пакет шума, который попадает на 25 последовательных битов, исказит точно 4 символа. Декодер для кода (255, 247) исправит любые 4-символьные ошибки без учета характера повреждений, причиненных символу. Другими словами, если декодер исправляет байт (заменяет неправильный правильным), то ошибка может быть вызвана искажением одного или всех восьми битов. Поэтому, если символ неправильный, он может быть искажен на всех двоичных позициях. Это дает коду Рида-Соломона огромное преимущество при наличии импульсных помех по сравнению с двоичными кодами (даже при использовании в двоичном коде чередования). В этом примере, если наблюдается 25-битовая случайная помеха, ясно, что искаженными могут оказаться более чем 4 символа (искаженными могут оказаться до 25 символов). Конечно, исправление такого числа ошибок окажется вне возможностей кода (255, 247).




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.