Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->
Обязательно посмотрите энциклопедию:

Радиоэлектроника, Схемы радиолюбителям


8.1.6. Декодирование Рида-Соломона. Теоретические основы цифровой связи

Лекции по Теоретическим основам цифровой связи   

8. Канальное кодирование: часть 3

8.1.6. Декодирование Рида-Соломона

В разделе 8.1.5 тестовое сообщение кодируется в систематической форме с помощью кода (7,3), что дает в результате полином кодового слова, описываемый уравнением (8.26). Допустим, что в ходе передачи это кодовое слово подверглось искажению: 2 символа были приняты с ошибкой. (Такое количество ошибок соответствует максимальной способности кода к коррекции ошибок.) При использовании 7-символьного кодового слова ошибочную комбинацию можно представить в полиномиальной форме следующим образом.

                                                   (8.28)

Пусть двухсимвольная ошибка будет такой, что

 (8.29)

Другими словами, контрольный символ искажен 1-битовой ошибкой (представленной как ), а символ сообщения — 3-битовой ошибкой (представленной как ). В данном случае принятый полином поврежденного кодового слова r(Х) представляется в виде суммы полинома переданного кодового слова и полинома ошибочной комбинации, как показано ниже.

                                                 (8.30)

Следуя уравнению (8.30), мы суммируем U(X) из уравнения (8.26) и e(Х) из уравнения (8.29) и имеем следующее.

(8.31)

 В данном примере исправления 2-символьной ошибки имеется четыре неизвестных — два относятся к расположению ошибки, а два касаются ошибочных значений. Отметим важное различие между недвоичным декодированием r(Х), которое мы показали в уравнении (8.31), и двоичным, которое описывалось в главе 6. При двоичном декодировании декодеру нужно знать лишь расположение ошибки. Если известно, где находится ошибка, бит нужно поменять с 1 на 0 или наоборот. Но здесь недвоичные символы требуют, чтобы мы не только узнали расположение ошибки, но и определили правильное значение символа, расположенного на этой позиции. Поскольку в данном примере у нас имеется четыре неизвестных, нам нужно четыре уравнения, чтобы найти их.







© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки. Карта сайта

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru