***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

8. Канальное кодирование: часть 3

8.4.4. Кодирование с помощью рекурсивного систематического кода

Ранее были описаны основные идеи сочетаний, итераций и мягкого декодирования на примере простого композиционного кода. Затем эти идеи применялись при реализации турбокодов, которые образуются в результате параллельных сочетаний сверточных кодов [17, 20].

Далее наступает очередь обзора простых двоичных сверточных кодеров со степенью кодирования 1/2, длиной кодового ограничения K и памятью порядка . На вход кодера в момент k, подается бит , и соответствующим кодовым словом будет битовая пара , где

по мудулю 2, (8.105)

и

по модулю 2, (8.106)

и — генераторы кода, a представлен как двоичная цифра. Этот кодер можно представить как линейную систему с дискретной конечной импульсной характеристикой (finite impulse response — FIR), порождающую хорошо знакомый несистематический сверточный (nonsystematic convolutional — NSC) код, разновидность которого показана на рис. 8.24. Соответствующую решетчатую структуру можно увидеть на рис. 7.7. В данном случае длина кодового ограничения равна К = 3 и используются два генератора кода — и . Хорошо известно, что при больших значениях достоверность передачи с кодом NSC выше, чем у систематического кода с той же памятью. При малых значениях существует обходной путь [17]. В качестве составляющих компонентов для турбокода был предложен класс сверточных кодов с бесконечной импульсной характеристикой [17]. Такие же компоненты используются в рекурсивных систематических сверточных (recursive systematic convolutional — RSC) кодах, поскольку в них предварительно кодированные биты данных постоянно должны подаваться обратно на вход кодера. При высоких степенях кодирования коды RSC дают значительно более высокие результаты, чем самые лучшие коды NSC, при любых значениях . Двоичный код RSC со степенью кодирования 1/2 получается из кода NSC с помощью контура обратной связи и установки одного из двух выходов (или ) равным . На рис. 8.25, а показан пример такого RSC-кода с К = 3, где получается из рекурсивной процедуры

по модулю 2, (8.107)

a равно если , и — если . На рис. 8.25, б изображена решетчатая структура RSC-кода, представленного на рис. 8.25, а.

Рис. 8.24. Несистематический сверточный код(nonsystematic convolution - NSC)

Рис. 8.25а. Рекурсивный систематический

сверточный код (recursive systematic convolution - RSC)

Рис. 8.25б. Решетчатая структура RSC-

кода, представленного на рис. 8.25, а

Считается, что входной бит с одинаковой вероятностью может принимать как значение 1, так и 0. Кроме того, показывает те же статистические вероятности, что [17]: Просвет одинаков у RSC-кода (рис. 8.25, а) и NSC-кода (рис. 8.24). Точно так же совпадает их решетчатая структура по отношению к переходам между состояниями и соответствующим входным битам. Впрочем, у RSC- и NSC-кодов две выходные последовательности и не соответствуют той же входной последовательности . Можно сказать, что при тех же генераторах кода распределение весовых коэффициентов кодовых слов RSC-кодера не изменяется, по сравнению с распределением весовых коэффициентов кодовых слов NSC-кодера. Единственное различие состоит в отображении между входной и выходной последовательностями данных.

Пример 8.5. Рекурсивные кодеры и их решетчатые диаграммы

а) Используя RSC-кодер (рис. 8.25, а), проверьте справедливость участка решетчатой структуры (диаграммы), изображенного на рис. 8.25, б.

б) Для кодера, указанного в п. а, начиная с последовательности данных = 1110, поэтапно покажите процедуру кодирования до нахождения выходного кодового слова.

Решение

а) Для кодеров NSC содержимое регистра и переходы между состояниями отслеживаются непосредственно. Но если кодер является рекурсивным, следует быть очень аккуратным. В табл. 8.5 содержится 8 строк, соответствующих 8 возможным переходам в данной системе, образованной из 4-х состояний. Первые четыре строки представляют переходы, когда входной информационный бит является двоичным нулем, а последние четыре — переходы, в которых является единицей. В данном случае процедуру кодирования с помощью табл. 8.5 и рис. 8.25 можно поэтапно описать следующим образом.

1.       В момент введения произвольного входного бита, k, состояние перед переходом (начальное) определяется содержимым двух крайних разрядов регистра, а именно и .

2.       В любой строке таблицы (переход на решетке) поиск содержимого разряда выполняется сложением (по модулю 2) битов , и в этой строке.

3.       Выходная кодовая последовательность битов, , для каждого возможного начального состояния (т.е. а = 00, b = 10, с = 01 и d = 11) находится путем прибавления (по модулю 2) и к .

Таблица 8.5. Проверка участка решетки с рис. 8.25, б

Входной бит

Текущий бит

Начальное состояние

Кодовые биты

Конечное состояние

0

0

1

1

0

0 0

1 0

0 1

1 1

0 0

0 1

0 0

0 1

0 0

1 1

1 0

0 1

1

1

0

0

1

0 0

1 0

0 1

1 1

1 1

1 0

1 1

1 0

1 0

0 1

0 0

1 1

Нетрудно убедиться, что элементы табл. 8.5 соответствуют участку решетки, изображенному на рис. 8.25, б. При использовании для реализации составных кодов регистров сдвига у турбокодеров проявляется интересное свойство, которое заключается в том, что два перехода, входящие в состояние, не соответствуют одному и тому же входному битовому значению (т.е. в данное состояние не входят две сплошные или две пунктирные линии). Это свойство проявляется, если полиномиальное описание обратной связи регистра сдвига имеет все порядки или одна из линий обратной связи выходит из разряда более высокого порядка, в данном случае .

б) Существует два способа реализации кодирования входной информационной последовательности =1110. Первый состоит в применении решетчатой диаграммы, а другой — в использовании цепи кодера. Воспользовавшись участком решетки, изображенным на рис. 8.25, б, мы выбираем переход по пунктирной линии (представляющий двоичную единицу) из состояния а = 00 (естественный выбор начального состояния) в следующее состояние b = 10 (которое подходит в качестве стартового для следующего входного бита). Следует заметить, что биты показаны на этом переходе как выходная кодовая последовательность 11. Эта процедура повторяется для каждого входного бита. Другой способ предполагает построение таблицы, такой как табл. 8.6, на основе цепи кодера, изображенной на рис. 8.25, а. Здесь время k показано от начала до конца всей процедуры (5 моментов времени и 4 временных интервала). Табл. 8.6 записывается в следующем порядке.

1.   В произвольный момент времени бит данных начинает преобразовываться в путем суммирования его (по модулю 2) с битами и в той же строке.

2.   Например, в момент времени k = 2 бит данных преобразуется в путем суммирования его с битами и в той же строке k = 2.

3.  Итоговый выход , определяемый логической схемой кодера, является кодовой битовой последовательностью, связанной со временем k = 2 (в действительности — интервалом между k = 2 и k = 3).

4.   В момент k = 2 содержимое крайних правых разрядов представляет собой состояние системы в начале этого переходам.

5.   Конечное состояние этого перехода представляется содержимым двух крайних левых регистров в той же строке (01). Поскольку сдвиг битов происходит слева направо, это конечное состояние перехода в момент k = 3 будет представлено как стартовое в следующей строке.

6.   Каждая строка описывается аналогично. Таким образом, в последнем столбце табл. 8.6 можно будет увидеть кодированную последовательность 1 1 1 0 1 1 0 0.

Таблица 8.6. Кодирование битовой последовательности с помощью кодера, изображенного на рис. 8.25, а

Время

Входной бит

Первый

разряд

Состояние в момент k

Кодовые биты

k

1

1

1

0 0

1 1

2

1

0

1 0

1 0

3

1

0

0 1

1 1

4

0

0

0 0

0 0

5

   

0 0

 



***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.