8.4.5. Декодер с обратной связью

Лекции по Теоретическим основам цифровой связи   

8. Канальное кодирование: часть 3

8.4.5. Декодер с обратной связью

Использование алгоритма Витерби является оптимальным методом декодирования для минимизации вероятности появления ошибочной последовательности. К сожалению, этот алгоритм (с жесткой схемой на выходе) не подходит для генерации апостериорной вероятности (a posteriori probability — АРР) или мягкой схемы на выходе для каждого декодированного бита. Подходящий для этой задачи алгоритм был предложен Балом и др. [26]. Алгоритм Бала был модифицирован Берру и др. [17] для использования в кодах RSC. Апостериорную вероятность того, что декодированный бит данных , можно вывести из совместной вероятности Х., определяемой как

                                   (8.108)

где   состояние кодера в момент времени k, a  — принятая двоичная последовательность за время от k = 1 в течение некоторого времени N.

Таком образом, апостериорная вероятность того, что декодированный информационный бит  представляется как двоичная цифра, получается путем суммирования совокупных вероятностей по всем состояниям.

                                  (8.109)

Далее логарифмическое отношение правдоподобий (log-likelihood ratio — LLR) переписывается как логарифм отношения апостериорных вероятностей.

                                           (8.110)

Декодер осуществляет схему решений, известную как решающее правило максимума апостериорной вероятности (maximum a posteriori — MAP), путем сравнения  с нулевым пороговым значением.

   если  

(8.111)

   если  

Для систематического кода LLR , связанное с каждым декодированным битом , можно описать как сумму LLR для dk вне демодулятора и других LLR, порождаемых декодером (внешние сведения), как показано уравнениями (8.72) и (8.73). Рассмотрим обнаружение последовательности данных с помехами, исходящей из кодера, изображенного на рис. 8.26, с помощью декодера, представленного на рис. 8.27. Предполагается, что используется двоичная модуляция и дискретный гауссов канал без памяти. Вход декодера формируется набором Rk из двух случайных переменных и . Для битов  и , которые в момент времени k представляются двоичными числами (1, 0), переход к принятым биполярным импульсам (+1, -1) можно записать следующим образом.

                                                (8.112)

и

                                               (8.113)

Здесь  и  являются двумя случайными статистически независимыми переменными с одинаковой дисперсией , определяющей распределение помех. Избыточная информация yk разуплотняется и пересылается на декодер DEC1 как , если , и на декодер DEC2 как , если . Если избыточная информация начальным декодером не передается, то вход соответствующего декодера устанавливается на нуль. Следует отметить, что выход декодера DEC1 имеет структуру чередования, аналогичную структуре, использованной в передатчике между двумя составными кодерами. Это связано с тем, что информация, обрабатываемая декодером, DEC1, является неизмененным выходом кодера С1 (искаженной канальным шумом). И наоборот, информация, обрабатываемая декодером DEC2, является искаженным выходом кодер С2, вход которого составляют как раз те данные, что поступают в С1, но обработаны устройством чередования. Декодер DEC2 пользуется выходом декодера DEC1, обеспечивая такое же временное упорядочение этого выхода, как и входа С2 (т.е. две последовательности в декодере DEC2 должны придерживаться позиционной структуры сигналов в каждой последовательности).







© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.