8.4.6. Алгоритм MAP

Лекции по Теоретическим основам цифровой связи   

8. Канальное кодирование: часть 3

8.4.6. Алгоритм MAP

Процесс декодирования турбокода начинается с формирования апостериорных вероятностей (a posteriori probability — АРР) для всех информационных битов, которые затем используются для изменения значений информационных битов в соответствии с принципом максимума апостериорной (maximum a posteriori— MAP) вероятности информационного бита. В ходе приема искаженной последовательности кодированных битов осуществляется схема принятия решений, основанная на значениях апостериорных вероятностей, и алгоритм MAP для определения наиболее вероятного информационного бита, который должен быть передан за время прохождения бита. Здесь имеется отличие от алгоритма Витерби, в котором апостериорная вероятность для каждого бита данных не существует. Вместо этого в алгоритме Витерби находится наиболее вероятная последовательность, которая могла быть передана. Но в реализации обоих алгоритмов, впрочем, имеется сходство (см. раздел 8.4.6.3). Если декодированное  мало, существует незначительное различие в производительности между алгоритмами MAP и Витерби с мягкий выходом (soft-output Viterbi algorithm— SOVA). Более того, при высоких значениях  и низких значениях  алгоритм MAP превосходит алгоритм SOVA на 0,5 дБ и более [30, 31]. Это может оказаться очень важным для турбокодов, поскольку первая итерация декодирования может давать довольно высокую вероятность ошибки. Алгоритм MAP основывается на той же идее, что и алгоритм Витерби, — обработка блоков кодовых битов в двух направлениях. Как только такое двунаправленное вычисление даст состояние и метрики ветвей блока, можно начинать расчет апостериорной вероятности и MAP для каждого бита данных в блоке. Здесь предлагается алгоритм MAP декодирования для систематических сверточных кодов; полагается, что используется канал AWGN, как указано Питробоном [30]. Расчет начинается с отношения значений апостериорных вероятностей, известных как отношения правдоподобий , или их логарифмов, , называемых логарифмическими отношениями правдоподобий (log-likelihood ratio — LLR), как было показано в уравнении (8.110).

                                                  (8.118,a)

                                            (8.119,б)

Здесь (совокупная вероятность того, что  и , при условии, что принята кодовая последовательность  , получаемая с момента k = 1 в течение некоторого времени N) определяется уравнением (8.108) и повторно риводится ниже.

                                      (8.119)

где  представляет искаженную последовательность кодированных битов, передаваемую по каналу, демодулированную и поданную на декодер согласно мягкой схеме решений. В действительности, алгоритм MAP требует, чтобы последовательность на выходе демодулятора подавалась на декодер по одному блоку из N бит за такт. Пусть  имеет следующий вид.

                                               (8.120)

Чтобы упростить применение теоремы Байеса, уравнение (8.119) переписывается с использованием букв А, В, С и D. Таким образом, уравнение (8.119) примет следующий вид.

                             (8.121)

Вспомним, что теорема Байеса гласит следующее.

  (8.122)

Отсюда, в приложении теоремы к уравнению (8.121) получается следующее.

    (8.123)

причем . Уравнение (8.123) можно переписать, выделяя вероятностный член, вносящий вклад . В следующем разделе три множителя в правой части уравнения (8.123) будут определены и описаны как прямая метрика состояния, обратная метрика состояния и метрика ветви.









© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.
E-mail: formyneeds@yandex.ru