Лекции по Теоретическим основам цифровой связи   

9. Компромиссы при использовании модуляции и кодирования

9.10.3.3. Эффективность кодирования для схемы 8-PSK при использовании решетки с четырьмя состояниями

Вычислим теперь эффективность кодирования для решетки с четырьмя состояниями в схеме 8-PSK, разработанной согласно правилам кодирования из раздела 9.10.2.2. Решетка на рис. 9.24 теперь будет исследоваться в контексте процедуры декодирования. Сначала в качестве настроечной выбирается нулевая последовательность. Иными словами, предполагается, что передатчик отправил последовательность, содержащую только копии сигнала номер 0. Чтобы продемонстрировать преимущества такой системы ТСМ (используя алгоритм декодирования Витерби), нужно показать, что самый простой способ совершения ошибки в кодированной системе сложнее самого простого способа совершения ошибки в некодированной системе. Необходимо изучить всевозможные отклонения от верного пути с последующим слиянием с верным путем (нулевой последовательностью) и найти тот, который имеет минимальное евклидово расстояние до правильного пути. Рассмотрим сначала возможный путь ошибочного события (рис. 9.24), который затемнен и помечен номерами сигнала 2, 1, 2. Квадрат расстояния до нулевого пути вычисляется как сумма квадратов отдельных расстояний между сигналами 2 и 0; 1 и 0; и 2 и 0. Отдельные расстояния берутся из диаграммы разбиения на рис. 9.22, в результате чего получаем следующее.

или

                                               (9.58)

В уравнении (9.58) евклидово расстояние d получается точно так же, как и результирующий вектор в евклидовом пространстве, т.е. как квадратный корень из суммы квадратов отдельных компонентов (расстояний). На рис. 9.24 есть путь с отклонением и повторным слиянием, который имеет евклидово расстояние, меньшее d = 2,2. Это затененное ошибочное событие (помеченное как сигнал 4) происходит, если (при использовании декодирования Витерби) вместо правильного пути, связанного с сигналом 0, выживает параллельный. Может возникнуть вопрос: если декодер выбирает параллельный путь (т.е. последующее состояние одинаково в обоих случаях), будет ли это в действительности серьезной ошибкой. Если параллельный путь — это неправильно выбранный путь (это все-таки путь с отклонением и повторным слиянием, даже если он занимает только один промежуток времени), то позже, когда будут введены схемы кодеров и биты, выживший сигнал 4 даст в результате неверное значение бита. Расстояние от пути сигнала 4 до пути сигнала 0 равно, как видно из рис. 9.22, d=2. Это расстояние меньше, чем расстояние для любого другого ошибочного события (можете проверить!); поэтому евклидов просвет для этой кодированной системы равен df=2. Минимальное евклидово расстояние для набора некодированных эталонных сигналов на рис. 9.23 равно . Теперь для вычисления асимптотической эффективности кодирования следует воспользоваться уравнением (9.56), что даст следующее.

                               (9.59)



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.