9.10.5. Пример решетчатого кодирования

Лекции по Теоретическим основам цифровой связи   

9. Компромиссы при использовании модуляции и кодирования

9.10.5. Пример решетчатого кодирования

В предыдущем разделе обсуждалось отображение сигналов в переходы решетки безотносительно к конечному отображению канальных символов (кодовых битов или кодовых слов) в переходы решетки. В этом разделе пример решетчатого кодирования начнется с рассмотрения точного определения структуры кодера. Структура кодера автоматически определяет решетчатую диаграмму и присвоение кодовых слов переходам решетки. Следовательно, в этом примере, если сигналы присвоены переходам решетки (а значит, подразумевающимся кодовым словам), уже нет возможности произвольно присваивать кодовые слова сигналам, как это делалось ранее при отсутствии схемы кодера.

Рассмотрим кодер, использующий сверточный код со степенью кодирования 2/3 для передачи двух бит информации за один интервал модуляции. Пример подобного кодера показан на рис. 9.29. Степень кодирования 2/3 достигается путем передачи без изменения одного бита из каждой пары битов исходной последовательности и кодирования второго бита двумя кодовыми битами (выполняется кодером со степенью кодирования 1/2 и длиной кодового ограничения К=3). Как показано на рисунке, биты из входящей последовательности попадают в сдвиговый регистр только через один (m2,m4,...). Может возникнуть вопрос: насколько может быть хорошей такая система, если преимущества, определяемые избыточностью, получают только 50% бит. Напомним пример с волшебником, который определял, что некоторые биты довольно уязвимы и поэтому они присваивались модулирующим сигналам с наилучшими пространственными характеристиками, в то время как другие считались устойчивыми и присваивались сигналам с худшими пространственными характеристиками. Модуляция и кодирование происходят одновременно; якобы "некодированные" не будут забыты, они выиграют от присвоения наилучших сигналов. Следует подчеркнуть, что кодирование и декодирование в схеме ТСМ происходит преимущественно на сигнальном уровне (в нашем первом описании ТСМ о каком-либо кодере не упоминалось), тогда как в традиционном коде с исправлением ошибок кодирование и декодирование происходит только на битовом уровне.

Решетчатая диаграмма на рис. 9.30 описывает схему кодера с рис. 9.29. Как и в главе 7, названия состояний соответствуют содержимому крайних правых К-1=2 разрядов регистра сдвига. Параллельные переходы на решетке (рис. 9.30) обусловлены некодированными битами; некодированный бит представляется крайним левым битом каждого перехода решетки. В каждом состоянии начинается четыре перехода. Для каждого состояния имеется два верхних перехода — от пары входных информационных битов (m1m2 равны 00 и 10); два нижних перехода проистекают от пары 01 и 11. На рис. 9.30 показана решетчатая структура, подобная показанной на рис. 9.24, за исключением того, что каждый переход на рис. 9.30 обозначен назначенным ему кодовым словом. Стоит повторить, что схема кодера определяет, какие кодовые слова появляются на переходах решетки; разработчик системы только присваивает сигналы переходам. Следовательно, когда уже имеется схема (поведение которой описывается решеткой), любой сигнал, присвоенный переходу в решетке, автоматически становится носителем кодового слова, которое соответствует этому переходу.

Рис. 9.29. Сверточный кодер со степенью кодирования 2/3.

Рис. 9.30. решетчатая диаграмма для кода со степенью кодирования 2/3.

Пусть кодовая модуляция — это 8-ричная амплитудно-импульсная модуляция (8-ary pulse amplitude modulation — 8-РАМ), как показано на рис. 9.31. На рис. 9.31, а показан кодированный набор сигналов, где для каждого сигнала евклидово расстояние до центра пространства сигналов показано в некоторых произвольных единицах, причем сигналы расположены на равных расстояниях один от другого и симметрично относительно нуля. На рис. 9.31, б показан эталонный набор 4-ричной схемы РАМ, в котором точки сигнала и расстояния помечены аналогичным образом. Важным этапом в разработке кодера является присвоение 8-ричных сигналов РАМ переходам решетки согласно правилам разбиения Унгербоека (рис. 9.32). Изучение этих правил может привести к такому же присвоению номеров сигналов переходам решетки, как показано на рис. 9.24. Подобное присвоение сигналов, а также кодовые слова, присвоенные схемой кодера, показаны на рис. 9.30. Наиболее несопоставимая пара сигналов (с расстоянием d2=8) была присвоена наиболее уязвимым (в плане появления ошибок) параллельным переходам. Кроме того, как следует из правил Унгербоека, сигналы со следующим наибольшим расстоянием (d1=4) были присвоены переходам, выходящим или входящим в одно и то же состояние. Для удобства на рис. 9.31, а показано также присвоение кодовых слов сигналам (результат отображения сигналов в переходы решетки).

Рис. 9.31. Множество сигналов: а) кодированная 8-ричная PAM, б) некодированная 4-ричная PAM.

Рис. 9.32. Разбиение Унгербоека сигналов 8-PAM

На рис. 9.24 путь ошибочного события, помеченный номерами сигналов 2, 1,2, — это путь с минимальным расстоянием для нашего примера модуляции 8-РАМ. Расстояние до нулевого пути вычисляется с использованием формулы (9.58). В этом примере, если взять отдельные расстояния с рис. 9.32, df вычисляется следующим образом.

или (9.61)

Можно легко убедиться, что для такого типа модуляции параллельный путь (с d=8) не будет ошибочным путем с минимальным расстоянием (как это было для 8-PSK). Далее для нахождения эталонного расстояния для 4-РАМ из рис. 9.31, б находим, что =2. Теперь для этого примера можем вычислить асимптотическую эффективность кодирования, сравнивая квадрат евклидова просвета кодированной системы с евклидовым просветом эталонной системы. Однако тут необходимо убедиться в том, что средняя мощность сигналов в каждом наборе одинакова. В предыдущем примере схемы 8-PSK выбор единичной окружности для кодированной и некодированной систем означал, что средняя мощность сигнала была одинакова в обоих наборах. Однако в этом примере ситуация несколько иная. Следовательно, для вычисления асимптотической эффективности кодирования требуется нормировать следствие неравенства средней мощности набора сигналов, т.е. видоизменить выражение (9.56) [35]. Соответственно записываем

(9.62)

где Sср, и — средняя мощность сигналов в кодированном и эталонном наборах. Расстояние соответствует амплитуде сигнала или напряжению; таким образом, квадрат расстояния соответствует квадрату напряжения, или мощности. Следовательно, средняя мощность сигнала из совокупности вычисляется как

(9.63)

где di — евклидово расстояние от центра пространства доi-гo сигнала, а М — количество кодовых символов в этом множестве. Для набора сигналов 8-РАМ, показанного на рис. 9.31, а, уравнение (9.63) дает значение =21. Для эталонного набора сигналов 4-РАМ, показанного на рис. 9.31, б, уравнение (9.63) дает значение S'cp = 5.

При использовании уравнения (9.62) асимптотическая эффективность кодирования для системы 8-РАМ будет иметь следующий вид.

(9.64)

Увеличивая количество состояний решетки (большая длина кодового ограничения) за счет возрастающей сложности декодирования, можно добиться большей эффективности кодирования. При кодировании сигналов 8-РАМ со степенью кодирования 2/3 решетка с 256 состояниями даст эффективность кодирования, на 5,83 дБ большую относительно набора сигналов 4-РАМ [9]. В этом случае вследствие использования решетчатого кодирования будет иметь место только незначительное увеличение сложности передатчика. Задача декодирования в приемнике становится более сложной, однако использование больших интегральных схем (large scale integrated — LSI, БИС) и сверхскоростных интегральных схем (high-speed integrated circuit — VHSIC, ССИС). делает такой метод кодирования чрезвычайно привлекательным для достижения значительной эффективности кодирования без расширения полосы пропускания.









© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.
E-mail: formyneeds@yandex.ru