Лекции по Теоретическим основам цифровой связи   

1. Сигналы и спектры

1.6.3.2. Реализуемые фильтры

Простейший реализуемый фильтр нижних частот состоит из сопротивления (R) и емкости (С), как показано на рис. 1.13, а; этот фильтр называется RC-фильтром, и его передаточная функция может быть выражена следующим образом [7].

,                                                           (1.63)

где . Амплитудная характеристика  и фазовая характеристика  изображены на рис. 1.13, б, в. Ширина полосы фильтра нижних частот определяется в точке половинной мощности; эта точка представляет собой частоту, на которой мощность выходного сигнала равна половине максимального значения, или частоту, на которой амплитуда выходного напряжения равна  максимального значения.

В общем случае точка половинной мощности выражается в децибелах (дБ) как точка -3 дБ, или точка, находящаяся на 3 дБ ниже максимального значения. По определению величина в децибелах определяется отношением мощностей,  и .

                                                                (1.64, а)

Здесь  и  - напряжения, a  и  - сопротивления. В системах связи для анализа обычно используется нормированная мощность; в этом случае сопротивления  и  считаются равными 1 Ом, тогда

Рис.1.13. RC-фильтр и его передаточная функция: а) RC-фильтр; б) амплитудная характеристика RC-фильтра; в) фазовая характеристика RC-фильтра

                                                                     (1.64, б)

Амплитудный отклик можно выразить в децибелах как

,                                                                     (1.64, в)

где  и  - напряжения на входе и выходе, а сопротивления на входе и выходе предполагаются равными.

Из уравнения (1.63) легко проверить, что точка половинной мощности RC-фильтра нижних частот соответствует  рад/с, или  Гц. Таким образом, ширина полосы  в герцах равна . Форм-фактор фильтра - это мера того, насколько хорошо реальный фильтр аппроксимирует идеальный. Обычно он определяется как отношение ширины полос фильтров по уровню -60 дБ и -6 дБ. Достаточно малый форм-фактор (около 2) можно получить в пропускающем фильтре с очень резким срезом. Для сравнения, форм-фактор простого RC-фильтра нижних частот составляет около 600.

Существует несколько полезных аппроксимаций характеристики идеального фильтра нижних частот. Одну из них дает фильтр Баттерворта, аппроксимирующий идеальный фильтр нижних частот функцией

  ,                                                                        (1.65)

где  - верхняя частота среза (-3 дБ), а  - порядок фильтра. Чем выше порядок, тем выше сложность и стоимость реализации фильтра. На рис. 1.14 показаны графики амплитуды  для нескольких значений . Отметим, что по мере роста и амплитудные характеристики приближаются к характеристикам идеального фильтра. Фильтры Баттерворта популярны из-за того, что они являются лучшей аппроксимацией идеального случая в смысле максимальной пологости полосы пропускания фильтра.

Рис.1.14. Амплитудный отклик фильтра Баттерворта

Пример 1.3. Прохождение белого шума через RC-фильтр

Белый шум со спектральной плотностью , показанной на рис. 1.8, а, подается на вход RC-фильтра, показанного на рис. 1.13, а. Найдите спектральную плотность мощности  и автокорреляционную функцию  сигнала на выходе.

Решение

Используя табл. А.1, находим Фурье-образ .

Как можно предположить, после фильтрации у нас уже не будет белого шума. RC-фильтр преобразовывает входную автокорреляционную функцию белого шума (определенную через дельта-функцию) в экспоненциальную функцию. Для узкополосного фильтра (большая величина RC) шум на выходе будет проявлять более высокую корреляцию между выборками шума через фиксированные промежутки времени, чем шум на выходе широкополосного фильтра.



*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.