Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

1.6.3.2. Реализуемые фильтры. Теоретические основы цифровой связи

Лекции по Теоретическим основам цифровой связи   

1. Сигналы и спектры

1.6.3.2. Реализуемые фильтры

Простейший реализуемый фильтр нижних частот состоит из сопротивления (R) и емкости (С), как показано на рис. 1.13, а; этот фильтр называется RC-фильтром, и его передаточная функция может быть выражена следующим образом [7].

,                                                           (1.63)

где . Амплитудная характеристика  и фазовая характеристика  изображены на рис. 1.13, б, в. Ширина полосы фильтра нижних частот определяется в точке половинной мощности; эта точка представляет собой частоту, на которой мощность выходного сигнала равна половине максимального значения, или частоту, на которой амплитуда выходного напряжения равна  максимального значения.

В общем случае точка половинной мощности выражается в децибелах (дБ) как точка -3 дБ, или точка, находящаяся на 3 дБ ниже максимального значения. По определению величина в децибелах определяется отношением мощностей,  и .

                                                                (1.64, а)

Здесь  и  - напряжения, a  и  - сопротивления. В системах связи для анализа обычно используется нормированная мощность; в этом случае сопротивления  и  считаются равными 1 Ом, тогда

Рис.1.13. RC-фильтр и его передаточная функция: а) RC-фильтр; б) амплитудная характеристика RC-фильтра; в) фазовая характеристика RC-фильтра

                                                                     (1.64, б)

Амплитудный отклик можно выразить в децибелах как

,                                                                     (1.64, в)

где  и  - напряжения на входе и выходе, а сопротивления на входе и выходе предполагаются равными.

Из уравнения (1.63) легко проверить, что точка половинной мощности RC-фильтра нижних частот соответствует  рад/с, или  Гц. Таким образом, ширина полосы  в герцах равна . Форм-фактор фильтра - это мера того, насколько хорошо реальный фильтр аппроксимирует идеальный. Обычно он определяется как отношение ширины полос фильтров по уровню -60 дБ и -6 дБ. Достаточно малый форм-фактор (около 2) можно получить в пропускающем фильтре с очень резким срезом. Для сравнения, форм-фактор простого RC-фильтра нижних частот составляет около 600.

Существует несколько полезных аппроксимаций характеристики идеального фильтра нижних частот. Одну из них дает фильтр Баттерворта, аппроксимирующий идеальный фильтр нижних частот функцией

  ,                                                                        (1.65)

где  - верхняя частота среза (-3 дБ), а  - порядок фильтра. Чем выше порядок, тем выше сложность и стоимость реализации фильтра. На рис. 1.14 показаны графики амплитуды  для нескольких значений . Отметим, что по мере роста и амплитудные характеристики приближаются к характеристикам идеального фильтра. Фильтры Баттерворта популярны из-за того, что они являются лучшей аппроксимацией идеального случая в смысле максимальной пологости полосы пропускания фильтра.

Рис.1.14. Амплитудный отклик фильтра Баттерворта

Пример 1.3. Прохождение белого шума через RC-фильтр

Белый шум со спектральной плотностью , показанной на рис. 1.8, а, подается на вход RC-фильтра, показанного на рис. 1.13, а. Найдите спектральную плотность мощности  и автокорреляционную функцию  сигнала на выходе.

Решение

Используя табл. А.1, находим Фурье-образ .

Как можно предположить, после фильтрации у нас уже не будет белого шума. RC-фильтр преобразовывает входную автокорреляционную функцию белого шума (определенную через дельта-функцию) в экспоненциальную функцию. Для узкополосного фильтра (большая величина RC) шум на выходе будет проявлять более высокую корреляцию между выборками шума через фиксированные промежутки времени, чем шум на выходе широкополосного фильтра.






Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru