10.3.2. Закрытая синхронизация передатчиков

Лекции по Теоретическим основам цифровой связи   

10. Синхронизация

10.3.2. Закрытая синхронизация передатчиков

Закрытая синхронизация передатчиков включает передачу специальных синхронизирующих сигналов, которые используются для определения временной или частотной ошибки сигнала относительно желаемой частоты или отсчета времени поступления сигнала на приемник. Затем полученные результаты по обратной связи подаются на передатчик. Определение ошибок синхронизации может быть явным или неявным. Если центральный узел имеет достаточные возможности для обработки, он может выполнять действительное измерение ошибки. Результатом подобного измерения может быть указание величины и направления сдвига или, возможно, только направления. Данная информация будет отформатирована и возвращена на передатчик по обратному каналу. Если центральный узел имеет недостаточные возможности для обработки, особый синхронизирующий сигнал может просто возвращаться на передатчик по обратному каналу. В этом случае интерпретацией сигнала занимается передатчик. Отметим, что создание специального синхронизирующего сигнала, который легко и однозначно интерпретировать, может оказаться довольно сложной задачей.

Относительные преимущества и недостатки закрытых систем обоих типов связаны с расположением средств обработки сигнала и эффективностью использования канала. Основным преимуществом обработки на центральном узле является то, что результатом измерений ошибки, произведенных на узле, может быть короткая цифровая последовательность. Подобное эффективное использование обратного канала может быть важным, если обратный канал является единственным на большое количество терминалов, использующих уплотнение с временным разделением. Еще одно потенциальное преимущество состоит в том, что средство измерения ошибки на центральном узле может совместно использоваться всеми терминалами, которые связываются через этот узел. Это, в свою очередь, может значительно снизить потребление ресурсов системы. Принципиальным потенциальным преимуществом обработки на терминале является то, что связь с центральным узлом не всегда является легкой задачей, а из соображений надежности, возможно, центральный узел должен быть максимально простым. Описанная ситуация — это, например, использование в роли центрального узла космического спутника. Еще одним потенциальным преимуществом обработки на терминале является то, что результат может быть получен быстрее, поскольку при использовании центрального узла всегда имеется некоторая задержка. Это может быть важно, если параметры канала меняются очень быстро. Основные недостатки заключаются в неэффективном использовании обратного канала и в том, что обратные сигналы может оказаться сложно интерпретировать. Сложность возникает, когда центральный узел является не просто ретранслятором, а выполняет функцию принятия решения относительно значений символов и передает эти решения по обратному каналу. Возможность принятия решения относительно значений символов может значительно снизить вероятность появления ошибки при передаче между терминалами; кроме того, это усложняет процедуру синхронизации. Это объясняется тем, что сдвиги частоты и отсчета времени неявно присутствуют в обратном сигнале, т.е. постольку, поскольку они влияют на процесс принятия решения относительно значения символов. Рассмотрим в качестве примера передачу сигналов в модуляции BFSK на центральный узел, принимающий некогерентные двоичные решения. Решения будут зависеть от энергии обнаруженного сигнала в детекторах метки и паузы. (Напомним, что "метка" (mark) — это название двоичной единицы, а "пауза" (space) — двоичного нуля.) Если переданный сигнал — это последовательность чередующихся меток и пауз, сигнал на центральном узле можно смоделировать следующим образом.

          (10.91)

Здесь Т — интервал передачи символов, ω0 — частота одного символа, (ω0 + ωs) — частота другого символа, Δω — ошибка по частоте на центральном узле, Δt — ошибка времени поступления сигнала на центральный узел, а  — произвольная фаза. Теперь, если

                          (10.92)

и

                           (10.93)

представляют квадратурные компоненты детектора, то энергию обнаруженного сигнала можно записать следующим образом.

 (10.94)

В частном случае нулевой ошибки времени Δt уравнение (10.94) упрощается до следующего вида.

                          (10.95)

При нулевой ошибке по частоте, получаем следующее.

                 (10.96)

Относительно выражений (10.94)-(10.96) следует сделать одно важное замечание: любая ошибка времени, частотный сдвиг или их комбинация снизит энергию принятого сигнала в детекторе, согласованном с истинным сигналом, и увеличит энергию в другом детекторе. Это приведет к уменьшению эффективного расстояния между сигналами в сигнальном пространстве и повышению вероятности ошибки. В то же время измерения вероятности ошибки (единственное, что доступно по обратному каналу) не позволяют определить, вызвана ли ошибка в результате сбоя времени или частоты (или их комбинации). Следовательно, передача обычных сигналов не дает отклика, который можно было бы использовать для синхронизации.

Полезным методом точной предварительной коррекции частоты для нашего примера передачи сигналов с модуляцией BFSK является передача постоянного тона, частота которого равна среднему от двух символьных частот. Подобный тон должен создавать случайную двоичную последовательность в обратном канале с равным числом меток и пауз. Смещение частоты со среднего значения приведет к доминированию пауз или меток. Нахождение центральной частоты описанным методом позволяет провести точную предварительную коррекцию частоты сигналов. После нахождения точной частоты передатчик может передавать последовательность чередующихся пауз и меток с целью определения точного отсчета времени. Изменяя отсчет времени при передаче (в пределах половины интервала передачи символа), передатчик может искать отсчет времени, дающий максимальное число ошибок. Если передача поступает на центральный узел со смещением относительно истинного отсчета времени на половину интервала передачи символа, оба детектора получают равную энергию и последовательность в обратном канале будет случайной. Определив время, когда переданные и полученные сигналы декоррелируют, передатчик вычисляет точное время передачи. Отметим, что данная процедура дает лучшие результаты, чем попытка найти точку с минимальным числом ошибок. Любая качественно разработанная система будет обладать достаточной энергией передачи, допускающей незначительные погрешности синхронизации времени; так что безошибочный обратный сигнал может быть получен и при неидеальной синхронизации. Фактически, чем больше отношение сигнал/шум, тем хуже работает процедура нахождения оптимума. В то же время процедура нахождения наихудшего варианта будет хорошо работать в любой качественной системе, а ее потенциальная точность повышается с увеличением отношения сигнал/шум. Это можно понять интуитивно, поскольку увеличение отношения сигнал/шум позволяет системе справляться с большими погрешностями синхронизации; так что уменьшение вероятности ошибки при уменьшении погрешности отсчета времени от половины времени передачи символа будет более быстрым при большом отношении сигнал/шум. Таким образом, это позволит точнее определить смещение отсчета времени на половину интервала передачи символа.







© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.