***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

11. Уплотнение и множественный доступ

11.1.5. Множественный доступ с кодовым разделением

В случае FDMA (рис. 11.3) плоскость ресурса связи была разделена на горизонтальные отрезки, соответствующие частотным диапазонам. Та же плоскость на рис. 11.7 была разбита по вертикали на временные интервалы TDMA. Эти два подхода являются наиболее распространенными в приложениях множественного доступа. На рис. 11.14 приводится иллюстрация метода множественного доступа, являющегося результатом совмещения FDMA и ТDМА. Этот метод называется множественным доступом с кодовым разделением (code-division multiple access — CDMA). CDMA является практическим приложением методов расширения спектра (spread-spectrum — SS), которые можно разделить на две основные категории: расширение спектра методом прямой последовательности (direct sequence — DS) и расширение спектра методом скачкообразной перестройки частоты (frequency hopping — FH). В данной главе будет рассмотрена схема CDMA с перестройкой частоты (FH-CDMA), описание схемы множественного доступа с кодовым разделением методом прямой последовательности приводится в главе 12.

Простейший пример CDMA с перестройкой частоты, кратковременное распределение частотного диапазона для различных источников сигнала, изображен на рис. 11.14. В каждом из коротких временных интервалов происходит перераспределение частотных диапазонов. Как показано на рисунке, в течение интервала 1 сигнал 1 использует диапазон 1, сигналы 2 и 3 — диапазоны 2 и 3. Во время интервала 2 сигнал 1 "перескакивает" в диапазон 3, сигнал 2 — в диапазон 1, сигнал 3 — в диапазон 2 и т.д. Таким образом, ресурс связи используется полностью, причем диапазоны пользователей перераспределяются в каждый последующий момент времени. Каждому пользователю присваивается псевдошумовой (pseudonoise — PN) код, который указывает последовательность перестройки частоты. Псевдошумовые коды ортогональны друг другу. Более подробно шумовые коды будут рассмотрены в разделе 12.2. На рис. 11.14 представлена существенно упрощенная модель схемы CDMA с перестройкой частоты, поскольку в приведенном примере из требований симметрии вытекает, что каждый сигнал изменяет частоту синхронно со всеми остальными сигналами. Однако в действительности этого не происходит. Одним из преимуществ схемы CDMA в сравнении с TDMA является то, что группы пользователей не нуждаются в синхронизации (синхронизироваться должны только передатчики и приемники каждой группы).

Рис.11.14. Уплотнение с кодовым разделением

На блок-схеме, представленной на рис. 11.15, показан процесс модуляции с использованием перестройки частоты. Во время каждого изменения частоты генератор псевдошумовой последовательности направляет кодовую последовательность на устройство скачкообразной перестройки частоты. Данное устройство выдает одну из допустимых для скачка частот. Допустим, что используется M-арная частотная манипуляция (M-ary frequency shift keying — MFSK). При обычной системе MSFK данные модулируют несущую волну с фиксированной частотой. В случае MFSK с перестройкой частоты (FH-MFSK) частота несущей скачет по всему диапазону частот. FH-модуляцию на рис. 11.15 можно рассматривать как процесс, состоящий из двух этапов: модуляции данных и модуляции перестройки частоты. Указанные действия могут быть совмещены — в этом случае модулятор на основе псевдошумового кода и собственно данных генерирует тон передачи. Подробно системы с перестройкой частоты рассматриваются в разделе 12.4.

Может возникнуть вопрос: если схемы FDMA и TDMA достаточно эффективны при распределении ресурса связи, какой смысл в использовании смешанного метода? Ответом могут служить уникальные преимущества СDМА.

1. Конфиденциальность. Если код группы пользователей известен лишь разрешенным членам этой группы, СDМА обеспечивает конфиденциальность связи, поскольку несанкционированные лица, не имеющие кода, не могут получить доступ к передаваемой информации.

2. Каналы с замираниями. Если для определенной части используемого спектра характерно замирание, сигналы в данной части будут ослабленными. При использовании схемы FDMA пользователь данной части спектра может испытывать постоянные затруднения со связью. При схеме FH-CDMA пользователь будет испытывать аналогичные проблемы только при изменении частоты в соответствующую часть спектра. Таким образом, возможные проблемы со связью равномерно распределяются между всеми пользователями.

Рис. 11.15. Процесс модуляции схемы FH-CDMA

3. Сопротивляемость подавлению. В течение времени между изменениями частоты полоса сигнала идентична полосе обычной схемы MFSK, т.е. обычно равна минимальной ширине полосы, достаточной для передачи символа MFSK. В то же время в течение нескольких временных интервалов система совершает скачки в диапазоне частот, ширина которого намного превышает ширину полосы данных. Такое использование полосы называется расширением спектра. Расширение спектра и вытекающая из него сопротивляемость подавлению подробно описаны в главе 12.

4. Гибкость. Наиболее важным преимуществом CDMA, по сравнению с ТDМА, является отсутствие необходимости синхронизации одновременно передающих устройств. Разные передачи не влияют на ортогональность процессов передачи с различными кодами. Данное утверждение станет понятнее при подробном описании в главе 12 автокорреляционных и взаимно корреляционных свойств кодов.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.